

Winter-Spring 2016 EM Course

Art is science made clear.

from Le coq et L'arlequin by Jean Cocteau (1889 - 1963)

Art is science made clear.

from Le coq et L'arlequin by Jean Cocteau (1889 - 1963)

Painter's Studio by Jan van der Straet (Stradanus) (Dutch, 1523-1604)

NEW YORK STRUCTURAL BIOLOGY CENTER

NMR X-ray EM Protein Production

Driven by....

NYSBC non-member users

National Resource for Automated Molecular Microscopy

SIMONS FOUNDATION

Schedule

- Welcome new students
- Course logistics
 - Questionnaire

- Introduction to EM and the course
- Simons Electron Microscopy Center
 - SEMC training programs
 - NYSBC tour

Handouts

Logistics

Questionnaire

Syllabus

http://semc.nysbc.org/course.html

Renovation Updates About SEMC

News/Events Forums Staff

Directions

New Users

Overview
Prior to
Start
Starting
Out
Training
Best Usage

Documentation
Publications
Instrumentation

Winter-Spring 2016 EM Course

Simons Electron Microscopy Center EM course

Electron microscopy in combination with image analysis is increasingly powerful in producing 3D structures of individual molecules and large macromolecular complexes that are unapproachable by other methods. This course is focused on the concepts and theories behind electron microscopy and will be taught in a reverse classroom format based on Grant Jensen's online course (Getting Started in Cryo-EM [https://cryo-em-course.caltech.edu/] from Caltech). Students will be responsible for watching these online lectures prior to class. Each week guest lecturers and SEMC staff lead discussions on the practice of solving molecular structures by electron microscopy.

The course will be held at the New York Structural Biology Center at 89 Convent Ave (133rd St).

Classes will be Mondays from 3:30-5:00 pm. On Wednesday at 3:30 pm we will screen the Jensen lectures that will be covered the following week.

To register for the course please fill out the following application form.

Course Syllabus:

Classes in A-11 seminar room (Mon 3:30-5pm)

- Jan 11: Introduction & SEMC tour (short class) [Ed Eng & SEMC staff, NYSBC]
- . Jan 18: No class Martin Luther King
- Jan 25: Basic anatomy of the electron microscope [Christoph Wigge & Anchi Cheng, NYSBC]
- Feb 1: Fourier transforms and Image Formation [Bill Rice, NYSBC]

Video lectures

http://cryo-em-course.caltech.edu/videos

Welcome Course Overview Outline Lecture Videos Instructor Links

WELCOME TO THE COURSE

Before diving into the lecture videos, start by watching the trailer and reading the course overview and outline.

We hope you enjoy learning about cryo-electron microscopy (cryo-EM)!

Class organization

Monday

3:30-5pm - A11 seminar room

1.5 hr class

30 min - Introduction by guest lecturer

15 min - Coffee break/informal conversation

45 min - Open ended discussion

Wednesday (optional)

Starts at 3:30 (or earlier if possible) - SEMC conference room

Video screening/Recitation section

Jensen lectures that will be covered the next week will be played SEMC lecturers will be available to assist with lecture topics

Class structure

Section 0: Course overview / Intro to EM

Section 7: EMDB, Validation methods &

Fitting Atomic models

Section 1: Anatomy of an EM

Section 2: Fourier transforms and Image Formation

Section 3: Challenges in EM & Sample prep

Section 4: Tomography

Part I: ET

Part II: FIB-SEM

Section 5: Single Particle

Part I: SP Analysis & Sample prep

Part II: Data collection & Reconstruction

Part III: Additional topics & limitations

Section 6: 2D crystallography

Part I: 2dx

Part II: Helical

Question:

What biological systems are you interested in?

NMR X-ray EM

The Scale of Biological Structures

Nanoscale: The scale of biological structures

Electron Microscopy

Class structure

Section 0: Course overview / Intro to EM

Section 7: EMDB, Validation methods &

Fitting Atomic models

Section 1: Anatomy of an EM

Section 2: Fourier transforms and Image Formation

Section 3: Challenges in EM & Sample prep

Section 4: Tomography

Part I: ET

Part II: FIB-SEM

Section 5: Single Particle

Part I: SP Analysis & Sample prep

Part II: Data collection & Reconstruction

Part III: Additional topics & limitations

Section 6: 2D crystallography

Part I: 2dx

Part II: Helical

Comparison of a light microscope, TEM & SEM

Section 1: Anatomy of an EM

Christoph Wigge & Anchi Cheng [NYSBC]

Comparison of a light microscope, TEM & SEM

Comparison of a light microscope, TEM & SEM

Section 2: Fourier transforms and Image Formation

Bill Rice [NYSBC]

From W. Baumeister et al. Trend in Cell Biology 9(1999)81

How to make an EM ready sample

Section 3: Challenges in EM & Sample prep

Ed Eng & Ashleigh Raczkowski [NYSBC]

How to make an EM ready sample

Electron Microscopy

EM modalities

resolution range

1.9Å

200Å

Class structure

Section 0: Course overview / Intro to EM

Section 7: EMDB, Validation methods &

Fitting Atomic models

Section 1: Anatomy of an EM

Section 2: Fourier transforms and Image Formation

Section 3: Challenges in EM & Sample prep

Section 4: Tomography

Part I: ET

Part II: FIB-SEM

Section 5: Single Particle

Part I: SP Analysis & Sample prep

Part II: Data collection & Reconstruction

Part III: Additional topics & limitations

Section 6: 2D crystallography

Part I: 2dx

Part II: Helical

Section 4: Tomography

Part I: David Stokes [NYU]

Part II: Bill & Christoph [NYSBC]

Looking at ordered arrays and small macromolecules

Section 6: 2D crystallography

Part I: Iban Ubarretxena [MSSM]

Part II: Hernando Sosa [AECOM]

Looking at ordered arrays and small macromolecules

Membrane protein purified in detergent

Detergent solubilized lipids added

Different buffer components screened and detergent removed

Looking at ordered arrays and small macromolecules

Membrane protein purified in detergent

Detergent solubilized lipids added

Different buffer components screened and detergent removed

Section 5: Single Particle

Part I: Joachim Frank [CU]

Part II: Amedee Des Georges & Reza Khayat [CUNY]

Vitrification process for CryoTEM

9 17926 283351

The Resolution Revolution!

Anchi Cheng

Melody Campbell

- Milazzo, A.C., Cheng, A., Moeller, A., Lyumkis, D., Jacovetty, E., Polukas, J., Ellisman, M.H., Xuong, N.H., Carragher, B., and Potter, C.S. (2011). Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy. J Struct Biol *176*, 404-408.
- Brilot, A.F., Chen, J.Z., Cheng, A., Pan, J., Harrison, S.C., Potter, C.S., Carragher, B., Henderson, R., and Grigorieff, N. (2012). Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol *177*, 630-637.
- Campbell, M.G., Cheng, A., Brilot, A.F., Moeller, A., Lyumkis, D., Veesler, D., Pan, J., Harrison, S.C., Potter, C.S., Carragher, B., and Grigorieff, N. (2012). Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure *20*, 1823-1828.

Niko Grigorieff

A new generation of cameras has improved the resolution and the efficiency of data collection

Charge Coupled Device (CCD)

Direct Detection Device (DDD)

Improving the resolution: Detecting electrons instead of photons

CCD DDD

1.37 Å/pixel 1.38 Å/pixel

200KeV; 20 e⁻/Å²; carbon film; 3k x 3k image

Improving the resolution: Correcting for drift and beam induced motion

Improving the resolution: DDD records a set of frames ("movie")

0.5 e⁻/Å²/frame

Image = Frame1 + Frame2 + Frame3 + Frame4 + Frame5

We can use DDD movies to examine (and correct) "beam induced motion"

Correcting for beam induced movement

60-frame average (no alignment)

2.8 Å resolution reconstruction of the 20 S proteasome

David Veesler

Anchi Cheng

• Melody Campbell, David Veesler, Anchi Cheng, Bridget Carragher, and Clinton S. Potter (2015). 2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20 S proteasome using cryo-electron microscopy. eLife.

2.8 Å resolution reconstruction of 20 S proteasome

Class structure

Section 1: Anatomy of an EM

Christoph Wigge & Anchi Cheng [N

Section 2: Fourier transforms and Image Form Bill Rice [NYSBC]

Section 3: Challenges in EM & Sample prep Ed Eng & Ashleigh Raczkowski [NY 3DC] Section 7:

EMDB,
Cathy Lawson [Rutgers]

Section 4: Tomography

Part I: David Stokes [NYU]

Part II: Bill & Christoph [NYSBC]

Section 5: Single Particle

Part I: Joachim Frank [CU]

Part II: Amedee Des Georges &

Reza Khayat [CUNY]

Part III: Yong Zi Tan, [COLU/NYSBC]

Section 6: 2D crystallography

Part I: Iban Ubarretxena [MSSM] Part II: Hernando Sosa [AECOM]

Validation methods Tom Walz [RU]

situs.biomachina.org
Fitting Atomic models
Willy Wriggers
[Old Dominion University]
SEMC Forum
April 26 - noon

SIMONS ELECTRON MICROSCOPY CENTER

NEW YORK STRUCTURAL BIOLOGY CENTER

Painter's Studio by Jan van der Straet (Stradanus) (Dutch, 1523-1604)

9 member institutions

Member Institution Services

- Training in instrumentation and techniques, and individual instruction
- Assigned, dedicated instrument time

Additional services

(offered on a fee-for-service basis)

- Additional EM time (members) or access to EMs with staff assistance (non-members).
- EM starter kits and consumables

SEMC mission

resolution range

1.9Å

200Å

The Simons Electron Microscopy Center

Focus on:

SEMC Training Programs

yearly

SEMC EM Course

Theory behind EM

starts Jan 11

quarterly

SEMC Appion workshop

Appion data processing practical Jan 28

monthly

SEMC New User Training

Sample preparation [neg-stain & cryo]

Leginon intro/use of screening microscopes

24-hr access test

All hours access test
Safety training

weekly

User Project Discussion Meetings

Mon @ 11am

Thurs @3pm & @4pm

daily

Advanced Leginon use

Training for independent use of the microscopes

Online registration

NEW YORK STRUCTURAL BIOLOGY CENTER

ABOUT -

RESEARCH -

PEOPLE -

EDUCATION & EVENTS -

CONTACT -

DIRECTIONS -

Renovation Updates About SEMC

> News/Events Forums Staff Directions

Training

New user training [monthly]:

New users are required to attend a group new user training session before independent use of the facility. We offer these 1-day training sessions the beginning of each month from 9am to 4:30pm. The morning session will cover sample preparation (Negative-staining and Plunge Freezing). The afternoon session will cover basic TEM use (Loading samples and Introduction to Leginon). Also, for your convenience you may purchase a starter EM user kits from us.

Appion workshop [quarterly]:

https://www.surveymonkey.com/r/AppionJanuary2016

SEMC group members lead a workshop on the Appion single-particle data processing workflow. Appion is a "pipeline" for processing and analysis of EM images. Appion is integrated with Leginon data acquisition, but can also be used stand-alone after uploading images or particle stacks. Topics include analyzing the quality of your data collection, generation and refinement of 3D reconstructions, and validation methods.

Online materials

http://semc.nysbc.org/start.html

NEW YORK STRUCTURAL BIOLOGY CENTER

ABOUT -

RESEARCH -

PEOPLE -

EDUCATION & EVENTS -

CONTACT -

DIRECTIONS -

About SEMC

News/Events Forums Personnel Directions

Services/Access

Instrumentation Resources Training

Simons Electron Microscopy Center

About the Simons Electron Microscopy Center

The Simons Electron Microscopy Center provides expertise and resources for understanding both molecular and cellular structures. Molecular structure determination is enabled by high-end transmission electron microscopes (TEMs), direct detection cameras, and computational support for single particle analysis. Cellular structure determination is enabled by tomographic

EM Directors

EMG@nysbc.org

Bridget Carragher, Ph.D. Clint Potter, Ph.D.

EM Staff

Bill Rice, Ph.D. **EM Manager**

Ed Eng, Ph.D. Scientist

Scientist

Christoph Wigge, Ph.D. Ashleigh Raczkowski, B.S. Kelsey Jordan, B.S. **Technician**

Technician

Instrumentation

FEI Helios 650

+ 4K ETD, TLD, ICE Gatan US4000 4K CCD

JEOL 1230 FEI Tecnai F20

> TVIPS F416 4K CMOS

JEOL 2100F

Gatan **K2 Summit Direct Detector**

JEOL 3200FSC

Direct Electron

DE-20 Direct Detector

FEI Titan Krios

FEI

Falcon 2->3 Direct Detector

Coming soon

Schedule

- Welcome new students
- Course logistics
 - Questionnaire
 - Other SEMC training programs
- Introduction to EM

NYSBC tour

Andy Warhol's New York studio circa 1960s

Jeff Koons's New York studio