Fourier Transforms and
Image Formation
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ine Wave

 y=2sin(3x+ /3 )




Fourler Series



-ourier Series

Non-periodic Functions

For functions which are defined only on the interval [-1t, ], we extenc
the function by periodicity onto the whole x-axis:
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Details



Conventions

* Image domain * Fourier Domain
o Real space o Fourier Space
o f(x,y) . Inverse space
. f(r,0) o Reciprocal space
. (t)  Diffraction space
o F(X,Y), F(kx,ky)
o F(k,®)
o H(w)










-ourier Transforms

The two equations

are mates, and let you convert from real space to frequency space
and back



Fourier transform of a delta function
h(t)= Ko(z)
H(f)=fK5(t)e‘2”"ﬁdt

H(f)=K



Top-hat function

): sin(X)

H(X
X

sinc function



Comb function

o Infinite points on comb

Separation =T

h(t)= Z ot =nT)

Separation = 1/T



Gaussian Function

width=a

width=1/a












| Ma ge Sam p | | N g Shannon-Nyquist sampling limit:

Finest spatial period must be sampled >2x

(fO rd Iglta | FT) Otherwise — aliasing

2d Must see peaks and valleys of a feature
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A minimally sampled image Undersampled



Pixel Size: 1.2 A






Images: Extending transforms into 2d

« Consider 1images as a 2 dimensional function of x
and y, where the value of (x,y) 1s represented as
brightness
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Fourier transform is an invertible operator
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* # - Friedel mates



-ourier Transforms of Images

Computationally, images are a discrete matrix of points, and so the
computer actually calculates the discrete Fourier transform (DFT)

We are back to sums instead of integrals

The Fast Fourier transform (FFT) is efficient: on order n log(n) rather
than n?(Cooley and Tukey, 1965; Gauss 1805)

Originally for n of power of 2, it can be calculated for all n, though
power of 2 is simpler (small prime factors better)

Generally only the amplitude is displayed






Importance of Phase and Amplitude

Calculate FFT Keep amplitude

Calculate FFT Keep phase



Importance of Phase and Amplitude

Inverse FT

Amplitude of object 1
Phase of object 2

Reconstituted image 1s dominated by phase






rojection Theorem
Central Slice Theorem)

From Baker and Henderson (2012), International Tables
of Crystallography Vol. F, Ch. 19.6, pp. 593-614.

Different 2D projected images

Fourier Inversion

' 4

2D transforms are sections of 3D Fourier transform






















Correlation and Convolution

Convolution

P(x)=/—o T & f(xl )g(xl' —x)dx Correlation

Convolution Theorem

h(x)=FT-{F(X)G(X)}

p(X)=FT-H{F(X)G*(X)} G*(X): complex conjugate of C
Complex conjugate:
if X:a—l—ib, x* = g-1b



mage Formation






Image formation

o Object is modeled as a weak-phase object
o Consider only phase contrast at first
o Will add amplitude contrast later

incoming wave

object in ice

modified wave Observe: projected density of object

Frank, 2006



Image Formation

P, =exp(ikz)

r object in ice d(r) = fC(l‘, z)dz

modified wave W(r) = Yo exp[i®(r)]

incoming wave

Taylor Expansion of modified wave equation: (r) = Y, [1 + id(r) — % <I>(r)2 ooty :|

Weak phase approximation: ¢(r)<<I Y(r) =Wy [1 + iP(r) }

Pt

scattered wave

k, 2006 unmodified wave (90° phase shift)












Contrast Transfer Function (CTF)

o Observed image:

o f(x) =0(x) * psf(x) * env(x) + n(x)
- f(x) : observed projection of image
- o(x): true projection of image
- psf(x): point-spread function
- env(x): envelope function of microscope
- n(x): noise

- FT:
o F(k) =0O(k) x CTF(k) x ENV(k) + N(k)



Image Formation

Lens aberrations and defocusing shift the phase of the scattered wave,
as described by y(k)

y(k) = 27 x(k)

v(K) 1s called the wave aberration function
Define y 1n polar coordinates as follows:

k= ki, ©=gtanlk.k,)

N | —

Zg . 1
X(k,9) = =53] Az + Zsin 2 - ¢o) [ + 727 Cok

| /

ink, 2006 defocus astigmatism spherical aberration



CTF Visualization: FFT of Image

good 1image Astigmatism



Contrast Transfer Function

Compute FT of image: F(k) = O(k)A(K) sin y(k)
where
O(k)=FT{y(r)} A(K) = aperture function
WhA2) =(mAz k12 +7/2 kT4 )

(ignoring astigmatism and using generalized defocus and frequency)

sin y(k) -- Contrast Transfer Function

FT of image 1s multiplied by CTF
Image 1s convoluted with CTF
FT of CTF is a point-spread function









Amplitude Contrast

o Due to loss of electrons due to
- scattering outside of aperture
- removal by inelastic scattering

o ratio of amplitude to phase contrast depends on atomic weight

o Assuming homogeneous specimen, get modified CTF:

H'(k) = sin y(k) — Qg cos y(k) Q,: % amplitude contrast (~7% for cryo)



Coherence and Envelope Functions

CTF is dampened because of partial coherence of beam

a) finite source size of beam

Ei(k) = exp[—mq(CsA k> — Azhk 2
* p[ e ) ] defocus dependent

b) energy spread of beam

B k)= c:xp[—(rr(SzA/c2 4 2)2] defocus independent

c) other effects: energy fluctuations, coolant fluctuations,
mechanical movement, ... approximate as Gaussian B factor exp(-Bk?)

ENV(k)=E.(k)E, (K)E, (k)















“TF Determination Example: CTFFIND3/4



VITF

Modulation Transfer Function of the detector

Measures response of the detector in the frequency domain

* A measure of how much contrast is transferred to the image at each
resolution

Point Spread Function: The “blurring kernel” of the detector
* Image,, = PSF @ Image,,

- MTF <) psF



VITF: All Cameras at NYSBC



Courtesy of Radostin Danev



Courtesy of Radostin Danev




IMAGING OBJECT AS IS

Practical Phase Plate for cryo-EM
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