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Imaging in the
Transmission Electron Microscope

Electrons generated in cathode

molecule embedded
in vitreous ice

3D object

recorded on film or digital
camera

2D projection

Transmission means that the signal is generated from electrons passing through the
specimen. We see a 2D projection = line integral over the 3D density along the beam.




Specimen preparation

Purified sample — standards of purity have changed with the advent of
classification (“computational purification”). In some experiments it is
even desirable to admit molecules in different conformational and

compositional states.
Apply sample to EM grid as a thin film (~1000 A) suspended over holes.
Carefully controlled blotting is a critical step — control blotting force and
time
Coverage with molecules is determined by:

(1) sample concentration

(2) geometry and makeup of metal grid -- copper, molybdenum, gold

copper (traditional), molybdenum (match heat expansion of
carbon), gold (avoid charge-induced vibrations)

(3) geometry of the overlaid carbon grid (Quantifoil) — size of holes,
thickness of film
(4) (optional) overlaid thin carbon film



Specimen support

Sample
Carbon

Grid | —l———

Home-made Quantifoil or C-flat

EM grid, Copper, 3 mm Carbon layer on EM grid

Quantifoil vs. C-flat grids: different edges, different
thickness, different size of meniscus problem




Holes regularly arranged on a Quantifoil grid enable fully automated data acquisition



EXAMPLE OF MENISCUS EFFECT:
MOLECULES ACCUMULATE NEAR EDGE OF HOLE




Thin carbon (~100 A), produced by evaporation on mica, floated
onto Quantifoil-coated grid.

(1) Enhance signal of power spectrum, for CTF determination

(2) Induce more even coverage of orientations for some molecules
(e.g., ribosomes)

EM grid Grid square Hole in carbon film Cross section of hole
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thin carbon (optional)

water = vitreous ice molecules

T
\ Quantifoil
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GOLD GRIDS
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John Russo and Lori Passmore
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discovered that the carbon over

the grid square oscillates like a
drum, moving up and down.

There is a sideways component,

as well.

Gold grids reduce this effect
fold.
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Russo and Passmore, Science 2014
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Plunge-freezer to prepare samples for cryo-EM

Manual automated, climatized

am
Adjustable stop v ¥

Steel rod

Guide collar

Tweezers

Styrofoam
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How to get from 2D to 3D: The Projection Theorem
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1) The transmission electron microscope
forms projections of the 3D object.

2) The Theorem:

“The 2D Fourier transform of the
projection of a 3D density is a central
section of the 3D Fourier transform of the
density, perpendicular to the direction of
projection.”

3) It is necessary to collect a sufficient
number of projections over a large
angular range. From these projections,
the object’ s density distribution can be
reconstructed.



Directions
of view

First 3D reconstruction from EM images:
3D Reconstruction of Bacteriophage
Tall Using the Fourier-Bessel Approach

Transmission
image 1s a

1 9 6 8 projection

Fourier
transformation
of a projection

oives

coefficients in
a section
of "Fourier space”

Reconstruction by
Fourier synthesis

using all sections

Aaron Klug and David DeRosier, LMB, MRC DeRosier & Klug, Nature 217 (1968) 133




How do we collect the projections?
Three data collection strategies for 3D reconstruction:

parallel electron beams parallel electron beams
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Determine orientations, 3D Reconstruction




Image classification




The Single-Particle Approach to Averaging and
Reconstruction in EM of Macromolecules

“Single” = unattached, free from contacts with other molecules.
This affects methodology of specimen preparation, electron microscopy, and image
processing.

Why single particles?

Advantages:

e native conformation, unaffected by crystal packing

e functionally meaningful states can be visualized

* no part of the molecule needs to be chopped off for visualization

e multiple states visualized from the same sample

e ideal for looking at the dynamics of a molecular machine
Disadvantages (up to 2012):

e large computational challenges

e atomic resolution difficult to achieve for particles lacking symmetries



The Single-Particle Approach to Averaging and
Reconstruction in EM of Macromolecules

“Single” = unattached, free from contacts with other molecules.
This affects methodology of specimen preparation, electron microscopy, and image
processing.

Why single particles?

Advantages:

e native conformation, unaffected by crystal packing

e functionally meaningful states can be visualized

* no part of the molecule needs to be chopped off for visualization
e multiple states visualized from the same sample

e ideal for looking at the dynamics of a molecular machine
Disadvantages (2012 onwards):

e large computational challenges

* atomicresolutionisasyet-difficult toachieve without symmetries- (DED cameras)



Single-Particle Reconstruction
Main initial assumptions:

1) All particles in the specimen have
(approx.) identical structure

2) All are linked by 3D rigid body
transformations (rotations,
translations)

3) Particle images are interpreted as
a “signal” part (= the projection of
the common structure) plus

1 . 144
noise

Important requirement:

even angular coverage, without
major gaps.




Single-Particle Methods
are also used for ordered assemblies

Ordered assemblies never strictly follow the symmetries, so image processing
relying entirely on the exact validity of the symmetries will fail to retrieve
the high-resolution information. Applications of single particle methods:

* Helical order (e.g., acetylcholine receptor, actin-myosin fiber) — Ed
Egelman’s (and Pawel Penczek’s) newer methods.

e 2D crystalline order (e.g., purple membrane protein) — “unbending”
approach vs “patch averaging” method.

* |cosahedral order (e.g., adenovirus) — radical departure from initial MRC-
based analytical methods.
General principle: (1) use symmetry to roughly locate the
repeats, then (2) refine position by using the cross-correlation
function (CCF)




“Shot Noise”

At the low exposure settings (e.g., 10 e/A2) required to avoid radiation damage,
the fluctuations of the electron distribution is a serious source of noise, called

shot noise. Low-exposure images typically have an SNR of 0.1

Only by averaging over a sufficient number of particle projections can the
original signal be retrieved.

Simulated images of ribosome at SNR ~ 0.1

Schwander et al., Phil. Trans. Roy. Soc. 2014



“Structural Noise”

The matrix of ice, and carbon deposit (if used) has a unique structure which

is superimposed when a projection image is formed. When images of particles
are averaged, the superimposed structure of the surrounding must be considered
“noise” since it is not reproducible from one particle to the next..



Signal and noise; definition of SNR

Signal s(r) (predictable, deterministic, originating from the object)
versus

Noise n(r) (stochastic; unrelated to the signal; aperiodic [no two
realisations are the same])

Signal-to-noise ratio (SNR) = signal variance/noise variance

Averaging over N noisy realizations of a signal increases the SNR by a
factor of N

Note that what is signal and what is noise in a given experiment depends
on the way the experiment is designed.



Two-dimensional processing: averaging of
images to eliminate noise
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Averaging requires the images to be aligned: in the array, each
image element, or pixel, must refer to the same point of the object.
Note: averaging in 2D only makes sense for molecules presenting the

exact same view
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Averaging, to improve the SNR

Averaging can be done in one of two ways:
-- either --

make use of order or symmetries to locate repeats
—or --

make use of cross-correlation search to locate repeats

In the first case, Fourier methods can be used instead of real-
space averaging



2D Fourier transform
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ordered on a periodic lattice.
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reciprocal grid

Fourier transform is complex,
each spot described by

an amplitude and a phase of
a component wave
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Fourier transform is concentrated in spots

on the reciprocal lattice. Noise is separated.

Inverse Fourier
transform

Noise-free projection image



2) make use of cross-correlation search
to locate repeats.

average

Frank et al., Science 1981



Alisnment of single-particle projections
(“particles”) is achieved by cross-correlation

* Translational cross-correlation function (CCF)

Discrete, unnormalized version:

i2\
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Fig. 3.8. Definition of the cross-correlation function. Image 1 is shifted with respect to
image 2 by vector r,,. In this shifted position, the scalar product of the two images arrays is
formed and put into the CCF matrix at position (p, g). The vector r,, is now allowed to
assume all positions on the sampling grid. In the end, the CCF matrix has an entry in each
position. From Frank (1980). Reproduced with permission of Springer-Verlag, New York.

e Rotational CCF



2D Fourier transform
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An image can be considered a superposition of sine waves of different
spatial frequencies running in different directions. Each sine wave is
characterized by an amplitude and a phase.

Alternative representation (as in this diagram) employ complex exponential
functions with complex coefficients.



The Discrete Fourier Transform (DFT) in 2D can be

defined as:
M-1N-1
mu nv
F(u, v)_MNZ Zf(m n)exp[ Zm( N)]
m=0n=
u=201,.. M-1, =01,.. N-—1
The inverse 2D DFT is given by:
M-1N-1
mu nv
f(m,n) = Z Z F(u,v) exp [Zm( N)]
u=0 v=
m=20,1,. M——l n=01.. N—1

An image f(m, n) is represented as a finite series of 2D exponentials
with complex coefficients F(u,v).



Discrete Fourier representation implies infinite
repetition of the image




N Ota tl ons: Fourier operator

Fourier transform: F(k) = ‘F {f(r)}
Inverse Fourier transform: f(r) = 7 {F(k)}

r=(x,y)
k = (k,, k)

Lower case

Upper case



Parseval’ s Theorem -- Conservation of Power

F(k) = F{i(r)}

definition: P(k) = |F(k)|? is the “Power spectrum”
Total power is the same in real and Fourier space:

[41F(k)|>dk=[ [i(r) —avrg|dr

where avrg = 1/areax [ i(r)dr

and subscript ; indicates “exclude origin in the integration”

Application: Signal-to-Noise ratio can be computed in Fourier
space:

SNR = [, |S(k) |2 dk/ [, | N(K) |2 dk



Point spread function and Contrast transfer function

In an optical instrument, the aperture limit, the aberrations of the lens and
other imperfections have the effect that a single point in the object is imaged
as an extended 2D function, the so-called Point Spread Function (PSF)

The FT of the PSF is known as the Contrast Transfer Function (CTF).

In the EM, the CTF is given by

CTF = sin(y(k))

where

v(k) = —7A [/_\.z + %szn?(qb _ @0)] B2+ NIC kS

N

defocus ax. astigmatism spherical aberration

k = spatial frequency vector; k = length of this vector



Point-Spread Function =
Response of the optical instrument to a point object

The point spread function has finite width, and is centered at the location
that the point would have in the image formed by an ideal instrument.



Contrast transfer function

Coherent

Partially
coherent

Power spectrum
“Thon rings”

after Fritz Thon, a pioneer
in optical diffraction analysis



What Thon rings show:

1) how far the information transmitted ranges in Fourier space
2) whether the lens is astigmatic (CTF depends on angle in the plane)

Why do we see rings? Because for an amorphous object, such as carbon,

the amplitudes of Fourier components are roughly the same throughout Fourier
space. Without CTF, we would see a uniform (white) disk up to the radius that
corresponds to the resolution limit.

Instead we see concentric white rings separated by black lines (zero transitions).



Defocus (and hence the CTF) is affected by the

particle’s z-position within the ice layer.
|deally, defocus should be measured for each particle separately,
but the signal is often not stron enough.
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Ice layer large compared with particle diameter




OBJECT PSF IMAGE = COVOLUTION
PRODUCT
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An object consisting of points, convoluted with the point spread function of the optical
instrument, results in an image in which each point is replaced by the PSF..

Convolution theorem



Convolution theorem

o(r) = “2D object” or “2D projection of a 3D object”
s(r) = “signal resulting from EM imaging”
h(r) = “point-spread function”

s(r) = o(r) o h(r) = “convolution product of o(r) with h(r)” o Convolution
stands for Xt Correlation
s(x) =ff0(x',y')h(x -x',y=y")dx'dy'
or X Scalar product

s(r) = f o(r"a(r —r")dr'

Special case: o(r) o 6(r) =s(r) convolution with a delta function is an identity operation

Convolution Theorem says: S(k) = ﬁs(r)} = O(k)H(k), where S(k) = :F{o(r)}, O(k) = ﬁo(r)},
and H(k) = Fih(r)}




“Correlation theorem”

s(r) = “signal resulting from EM imaging~ — two versions: s,(r) and s,(r)

CCF(r) = s,(r) ** s,(r) = “correlation function of s,(r) with s,(r)”

o Convolution
stands for

CCF (x,y) =ffS1 (x',y")s,(x+x',y+ y)dx'dy' 1% Correlation
or

X Scalar product
CCF(r) = f s(r)s(r+r"dr'

Special case: s,(r) © s,(r) autocorrelation function

Correlation Theorem says: @(k) = :F{CCF®} =5,(k)S,*(k) where S,(k) = jt{sl(r)},
S,(k) = Hs, (r)}




Translational alignment using the CCF —
a practical example

Padding is needed when CCF is computed via Fourier methods:




Need for padding follows from
the discrete Fourier representation:

Nonpadded image would get superimposed on a copy of itself




Translational alignment using the CCF —
a practical example

The peak indicates postion of perfect alignment of two images of the same molecule

CCF shift of peak from origin one of the images,
indicates relative shift of images padded



Auto-correlation function = cross-correlation
of an image with itself

(we need to know this since it’s used in the next slide)



CCF of EM Images with different CTFs

CCF of two images s, (r), s, (r) of the same object signal o(r) with
different CTFs, H,(k) and H,(k)

(using correlation and convolution theorems).

s,(r) = o(r) o h,(r); s, = o(r+Ar) o h,(r) o Convolution

CCF(r) = s,(r) 3 s,(r) It Correlation

Sl(k) X 52*(k) = 0O(k) x H1 (k)] x {O(k) x exp[2mikAr] x Hz(k)}* X Scalar product
= O(k) x O*(k) x exp[-2mikAr] x H,(k) x H,*(k)

Now back in real space:
CCF(r) = [o(r) = o(r)] o [h,(r)*h,(r)] O &(r-Ar)

Shifted auto-correlation function of signal CCF of point spread functions



Scherzer focus (A =1) A=10
(@) (b)

Cross-correlation peak Cross-correlation peak
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The cross-correlation function has a peak
standing out from a noisy background

PEAK
NOISE

The SNR in the CCF determines whether we will be successful in
finding the correct peak and its x,y coordinates. What factors affect
the size of the SNR?



Criterion for detection of CCF peak:
feasibility of alignment

Because of the low signhal-to-noise ratio in the images, there exists a critical
threshold for the feasibility of alighment of two raw images of a molecule.

The critical parameters are:

P...; - Maximum exposure [electrons/unit area] the molecule can tolerate
D -- particle size

c — contrast

d — resolution (distance)

3
Czdpcrit

Particle size D should satisfy D=

Saxton and Frank (Ultramicroscopy 1976)

Rule of thumb: alignment easy when mol. mass > 400 kD BUT: needs to be
revised in view of recent developments

Henderson (Quart. Rev. Biophys. 1995): number of molecules of a given

size required to reach 3A resolution, based on scattering data for electrons, X-rays,
and neutrons.




2D alignment strategies:

reference-based
versus reference-free

A variant of the reference-based method
updates the reference as it goes along, and
becomes thus less dependent on the initial
choice of reference.

How to combine rotation with translation:

(1) Iterative (alternating translational with
rotational search)

(2) Use of invariants



Multi-Step Reference-Based Alignment
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Noise-free molecule and
its ACF

The molecule in arbitrary
positions

ACFs of molecules above




ACF — based alignment method
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Variance map

* The variance mapis a “byproduct” of the averaging.
It can be used to find the regions where the images,
on average, differ maximally.

* Itis also the yardstick that helps determine whether
or not a density in a difference map is significant.

1 N
(N-1) £

particle image  average image

Vv (rj) = [pi(rj) _1_7(N)(rj)]2



variance map

(c)

average

(b)



Alignment of frames in movie mode of Direct
Electron Detection cameras

Most DED cameras allow

data to be collected in multiple
frames. This makes it possible
to correct for drift, even on

the level of single particles.
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B-galactosidase
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y-secretase

(vectors of motion are exaggerated) S. Scheres, eLife 2014



Resolution criterion: Images of two points, as function of their separation

Sum Curve

Point Spread Function

resolved Rayleigh criterion unresolved
Peaks are distinguishable Peaks are just resolved Peaks blend into a
single one

when distance is > d when distance is = d when distance < d

rayleigh rayleigh rayleigh

E. V. Orlova and H. R. Saibil, in Chemical Reviews 2011



Resolution definition, determination in
Fourier space

Resolution is a reciprocal quantity, measured in Fourier space

Defined as the spatial frequency [1/A] up to which information is
reproducible, by some measure of reproducibility

Decomposition of information, by Fourier rings
Randomly picked halfsets (e.g., odd- vs. even-numbered images)

Compare averages [reconstructions] from halfsets over rings (shells) in
Fourier space K Ak

k ring radius
Ak ring width

Fq (k) F, (k)



Resolution measures & criteria:
Fourier ring/shell correlation

F,(k), F,(K) Fourier transforms of halfset averages
(or halfset reconstructions)

Re{ » F(K)F,K)j

FSC (k,Ak) = o —
) TREE)FIEE) [

(k,Ak)

k = spatial frequency vector
k = |k| abs. size of spatial frequency
Ak = ring width or (in 3D) shell thickness
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Multivariate Data Analysis
and Classification

Images often need to be sorted into classes

Heterogeneity is due to (1) different viewing angle and (2) different
conformations of the molecules

Sorting them visually only works in the simplest cases

Multivariate analysis reduces the dimensionality of the classification
problem

Classification in 2D

RATIONALE:

Inventory of existing views




Liao et al., Nature 2013



An image represented in a high-dimensional
Euclidean space.

An image represented by an array of N x M pixels can be thought as a
vector in a (generalized) Euclidean space with N x M dimensions.

For example, an image of 64 x 64 pixels is a vector in a 4096-dimensional
space.

If two images are “similar” it means the distance between the vectors
representing them is small. That s, the vector end points lie close
together.

Groups of similar images form clusters in the generalized Euclidean space.

To show the concept, and introduce an important tool for classification, |
will use a simplistic image containing only two pixels.



Generalized Euclidean distance

Euclidean distance between two images f, and f:

E*n(a,r") = z|f1(7})_f2(Rarj +r)[*

J J J
= SIACHE+ D ARy +M =S L) LRy +1)]
Jj=1 Jj=1 Jj=1
const. const. cross-correlation

Similarity = closeness in high-dimensional Euclidean space = small E-distance
—> large value of CCF peak at matching position



Introducing: a set of images, each consisting of 2 pixels

* density of pixel #2
|| ||
© O ° ®
_____________ o @
O °
_ |
—> density of
pixel #1
v

Similarity = closeness in 2-D Euclidean space
Two images are similar if their (generalized) Euclidean
distance is small




A set of images consisting of two pixels: Intro into classification

density of pixel #2
N ]

Fortuitous case:
QO @ ® ® direction of grouping
I? _______________ happens to coincide

® @ o with a primary axis.
H
> density of pixel #1

08 88

Projection onto axis 1



density of pixel #2

A
N Hl
e ® General case:

® @ grouping is in a direction

____________________________ % that does not coincide
© 0® with a primary axis.
N
> density of pixel #1

Projection onto axis 1



density of pixel #2

T

New axis required for showing
clustering!

(linear combination of
axes 1 and 2)

—> density of pixel #1

Projection onto axis 1



Tools: Classification, and the Role of MDA

 Classification deals with “objects” in the space in which they are represented.

 For instance, a 64x64 image is an “object” in a 4096-dimensional space since, in
principle, each of its pixels can vary independently.

Let’ s say we have 8000 such images. They would form a cloud with 8000 points in
this space. This is an unwieldy problem.

* Unsupervised classification is a method that is designed to find clusters (regions of
cohesiveness) in such a point cloud.

* Role of Multivariate Data Analysis (MDA): find a space (“factor space”) with
reduced dimensionality for the representation of the “objects”. This greatly
simplifies classification.

* Reasons for the fact that the space of representation can be much smaller than the
original space: resolution limitation (neighborhoods behave the same), and lateral
correlations due to the physical origin of the variations (e.g., movement of a
structural component is represented by correlated additions and subtractions at the
leading and trailing boundaries of the component).




Principle of MDA:

Find new coordinate system, tailored to the data

pi | X= matrix containing N
N " image vectors (each with

u

: | 5 J elements) as rows
/Efvl (OR)* =" ()’ = (Xu)' X'u = u' X' Xu——>max

p. 151 [note
error in book
figurel]




32 x 32 phantom images in 8 (= 23) varieties

looking to the left ) [looking to the right

Brétaudiére JP and Frank J (1986) J. Microsc. 144, 1-14



Averages
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1vs?2

Data are clustered in the eight corners
of a 3D factor space formed by the first

three factors.

p. 168

1vs3

2vs3

0.066 +-===-=m= B e T —— EYRES S i e e e (R R 5

0.060 7
0.053 |7

0.046
0.039 3
0.033
0.026
0.019
0.013 ROUND

0.006 FACE--------=-—---mmmm oo TR FACE 1

-0.001
-0.007
-0.014
-0.021
-0.028
-0.034 | 8
-0.041

-0.048 4 4

-0.054

-0.061 +--——-—-- S RIGHT

-0.093

-0.066

-0.012

0.015

0.042

6 56

oo
o
F—U’IO\—U\

g

o
o
o
[=2)
"y
5
=}
|
1
|
1
|
1
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
\
|
|
|
1
\
|
+
|
|
1
\
i
]
1
\
|
|
]
]
1
1
i
|
|
|
|
|
1
1
1
|
1
1
1
|
|
m
N§
-

-0.093

(VY 2 S — s AR —OVAL

0.067
0.060
0.053
0.047
0.040
0.033
0.026
0.019 EYES
0.013 LOOK
0.006 RIGHT
-0.001 2
-0.008
-0.015 |4
-0.021
-0.028
-0.035 2
-0.042
-0.049

0,056 +-———mmmmmm e

-0.066

-0.066

-0.046

-0.039

ROUND
---MOUTH

-0.026

~

-0.007

0.013

0.033




* Factorl e

L*‘ B '
- ...
o -

p.175



Example Factor 2: position of eyes. Average contains centered oval
(from superposition of all images containing eyes shifted to right with
those having eyes shifted to the left).

To express the eye-related features of the images, the eigenimage must
either subtract density on the left and add it on the right, or vice-versa.

* Factorl

p.175



Class Averages

Instances

Total Avrg + F1

Total Avrg + F1+F2

Total Avrg + F1+F2+F3
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Stepwise reconstitution

of an image

p. 159



3D reconstruction -- preliminaries

 Under what conditions are projections of an object similar to
one another?

* Similarity €2 closeness in high-dim E-space
<2 belonging to the same cluster
<> high correlation



Shape Transform

 The Shape Transform is the Fourier transform of a binary
mask function (1 inside, 0 outside) whose shape is the shape
of an object in 2D or 3D

* Itindicates the size and shape of the local region in Fourier
space within which Fourier coefficients are correlated/
dependent.

Shape

Shape Transform




Shape Transforms




Similarity of projections, condition for 3D reconstruction,
and “kissing” shape transforms

Shape transform

Critical radius R
determines resolution

P1, P2 central sections in Fourier space.
AB angle subtended by P1, P2
D particle diameter




Determination of Particle Orientations

(A) unknown structure -- bootstrap
(1) Random-conical (uses unsupervised
classification)
(2) Common lines/ angular reconstitution
(uses unsupervised classification)

(B) known structure — low-res map available
(1) reference-based (3D projection matching
= a form of supervised classification)
(2) common lines/ angular reconstitution




RANDOM CONICAL RECONSTRUCTION

0-degree view
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Equivalent geometry




Conical Data Collection Geometry in Fourier
Space

Lanzavecchia et al.




COMMON LINES APPROACH TO DETERMINING ORIENTA

3\
]

17
N \x\

Common line C-C’ of two projections represented by
central sections P1 and P2



Two 2D projections of the same 3D object have in common:

in Fourier space: Fourier coefficients along the
line of intersection: “common line”

in real space: 1D projections in particular directions

The Sinogram (or Radon transform) of an image is an
exhaustive ordered display of all of its1-D projections

Comparing two sinograms, one can find the angles for
which maximum agreement is reached



1D Projection #1

2D Projection #1

3D Structure

J. Frank, in Molecular Machines in Biology 2011



Determination of orientation by projection matching

Generate projections from 3D map Use new angles for a new reconstruction

O O
Nt N e A

/ A \
_
max .
X E = —» 3 Eulerian angles} Y A—
CCF 2D shifts
Experimental projection
Stack of template projections Stack of CCF’s Stack of rotated, shifted

experimental projections

Stack of experimental projections

J. Frank, in Molecular Machines in Biology 2011




Initial Angular Grid

83 directions
~15 degrees separation




83-projection grid
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Iterative Angular Refinement

Generate projections from 3D map Use new angles for a new reconstruction

.l

N7

O O
Nt N e A

yx -\

. max X

. X Par—— N —— 3 Eulerian angles}
2 CCF 2D shifts
E Experimental projection

Stack of template projections Stack of CCF’s Stack of rotated, shifted
experimental projections

Stack of experimental projections

J. Frank, in Molecular Machines in Biology 2011




Angular Refinement

Given an initial 3D reference,

lterate the steps {3D projection matching + reconstruction}
Decrease angular grid size as you go on (range: 15° =» 0.5°)

Convergence criteria:
(1) convergence of particle angles
(2) convergence of resolution (monitor progress with FSC)

“Rule of neighborhood” saves computing time

e beware of problem of reference-dependence!




Start with coarse grid (15 degrees)
Decrease angular separation, down to 0.5 degrees

At some point, switch from global coverage to local coverage
of previously determined angles

Increasingly finer angular increments

v




Fourier Shell Correlation

Spatial Frequency

refinement round 01
refinement round 02
refinement round 03
refinement round 05
refinement round 10

FSC following progress of refinement




3D Unsupervised Classification

Statistical model:
each image is a projection of one
of K underlying 3D objects, k.

with addition of
white Gaussian noise

Unknowns: class numbers k, rotations, translations



Statistical model: the probability that X; is observed at pixel j,
given the data model A;, has Gaussian distribution centered on
A;, with halfwidth o

model

For each pixel j:
—A)?
POXIA)~ exp (-00)

-202

white noise =
iIndependence between pixels!

P(data image|model image) ~

LI P(xj|A)
J



Likelihood

* Find a model ® that optimizes the log-likelihood of

observing the entire dataset:
class

N K

L(@) = ) In Z E E P(imagel. | k,rot, trans, @)P(k, rot,trans | @)
=1 rot trans

AN

The model ® comprises: estimates for 3D objects, o, ...

iIntegrate over all unknowns!

Optimization algorithm: Expectation Maximization



ML3D

no A-site tRNA

A C D E F
Class 2 Class 4A Class 4B Class 5 Class 6

Pre-translocational states of wt 70S E. coli ribosome

Agirrezabala et al., PNAS 2012



QUESTIONS?



Generalized Euclidean distance

Euclidean distance between two images f, and f:

E*n(a,r") = z|f1(7})_f2(Rarj +r)[*

J J J
= SIACHE+ D ARy +M =S L) LRy +1)]
Jj=1 Jj=1 Jj=1
const. const. cross-correlation

Similarity = closeness in high-dimensional Euclidean space = small E-distance
—> large value of CCF peak at matching position



It’s easily verified that the Fourier transform of any real-valued
image has the following property:

F(k,,k,) = F*(-k,-k,) (Friedel’s Law)



Examples for Fourier transforms of simple
functions:
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Units of spatial frequency in 2D Fourier space

+ky

0.25 0.5 Nyquist
| Ky
1/6 1/3 A1 =0.5/d

Spatial frequency is either in Nyquist units (0... 0.5) or in physical units 0.5/d
relating to the sampling step d. In above example, sampling stepis d =1.5 A



