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Many Biological Specimens
have helical symmetry

-DNA
-o-Helix

-Viruses (TMV)

-Actin filaments
-Myosin filaments
-Microtubules
-Bacterial Flagella
-Protein-lipid tubes




| ecture outline

- Helix definition.

- Fourier Transform of a Helix.

- Fourier-Bessel Helical 3D reconstruction
- Real space Helical 3D reconstruction.

- Some examples.




Helical Symmetry

Combining the symmetry
operation of translation and
rotation (screw) produces a
helix

Possible Symmetry operations:
-Screw.
-n-fold rotation about axis.
-2-fold rotation perpendicular to axis. | )

4,0n left hand




Parameters of a Helix

Subunit Axial “

Translation = h
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Helices give several orientation views of the
asymmetric unit from a single view direction

4,0n left hand
(b)




Reconstruction of Three Dimensional
Structures from Electron Micrographs
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3D reconstruction approaches

2D crystals Helical crystals
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The Helical Latice Radial Projection
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Analogy between 2D lattices and Helical Lattices

Real space
y ax
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Reciprocal space
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From: Toyoshima (2000) Ultramicroscopy 84: 1-14




Analogy between 2D Fourier synthesis and
Fourier-Bessel helical synthesis

N 020

Summation od 2D waves to produce a
2D density map. (From Jeffery 1972) A helical wave



The Fourier Transform of a Helix
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Fig. 1. (a) Cartesian (z, y, z) and eylindrical-polar (r, ¢, z) eo-
ordinates of & point on a helix. (b) Corresponding coordinates
of & point in reciprocal space.

T(R, p, n|P) = J,(2xRr) exp [in(y-+ )]

Cochran, Crick & Vand 1952
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Fig. 2. Tllustration of Bessel functions. (Reproduced by kind
permission of the publishers from Tables of Functions by
Jahnke & Emde. New York: Dover Publications.)




The Transform of a discontinuous helix
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A helix and its corresponding Fourier
Transform (Power Spectrum)

A Layer line
Meridian number

Subunit Axial
Translation = h
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The DNA Structure
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The Fourier Bessel Transform

T(R, p, n|P) = J,(2nRr) exp [inly-+47)] R /Q%

Cochran, Crick & Vand 1952 r :

{a) (]

Fig. 1. (a) Cartesian (z, y, z) and cylindrical-polar (r, g, 2) co-
ordinates of a point on a helix. (b) Corresponding coordinates
of & point in reciprocal space.

Tranform of group of j atoms at differnt radii

2ol
r,, () = ,Zf} (2 Rr;) exp {1{—;@:}7, Tz):|.

&

F(R, p,ljc) = X2 G, (R) exp [in(y+im)] ,

n

Klug, Crick & Wickoff 1958



Why we can get a 3D structure from a single view?
The real and reciprocal space (Fourier transform) arguments

F(R, ®,lfc) = ) G,,(R) exp [in (P + =/2)].

F(R, D, l[c) = G,,(R) exp [in (P + =/2)].




The Selection Rule

4,0n left hand
(b)

4 units in 1 Turn (RH) 13 units in 6 Turns (LH)

Knupp C, Squire JM, HELIX: A helical diffraction simulation program, J Appl Cryst, 2004, Vol: 37, Pages: 832 - 835

http://www.ccpl3.ac.uk/software/program/Helix/INDEX.htm




The Selection Rule

| =th + um

| : Layer line Number.

t : Num. of turns/rep.

n: Num of Helical starts
& bessel order.

u: Num. of subunits/rep

m: Integer

If k-fold rotational symmetry then:
n must be multiple of k

Z = n(®/360° /h +m /h
Z: LL reciprocal spacing

®: Azimuthal angle. per subunit
h: rise distance. per subunit




Selection Rule Example




Finding Helical Symmetry Selection Rule
Indexing the diffraction Pattern




Clues to trace the Reciprocal Helical Lattice:

Approximate value of |n| for each layer line is: |n[+2 =2 nRr.
r: Helix radius, R: Reciprocal of layer line peak position to the meridian.

- Determine if n is odd or even by looking at mirror symmetric peaks from
the meridian. Even if same phase, Odd if phase diff = 180°.

- Determine hand of helical paths (sign of n). Shadow or tilt specimens.
-The dimension of the unit vectors should be aproximately equal to the
inverse of the subunits dimensions. d=1.34(m)¥® (d in A, m in daltons)

(e.g actin dimensions ~ 5 nm)

- Draw n,Z plot.

n,Z Plot for Actin

9 T Y M 0 1|
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Flattening increases apparent radius of helical tubes

Negative staining



Indexing the diffraction Pattern

3 20 10 0 10

Bessel order (n)

From: Diaz et al., Methodsin Enzymol.482: 131-165 (2010)



The Diffraction Pattern of a Helix Has
Reflections From Planes in the Front and Back
of the Helix

Different from the case of the transfrom of a
2D lattice where reflections from a set of
planes form a spot in Fourier space. In the
case of a helix the reflections are continuous
Bessel function along “layer” lines.




Drawing the Reciprocal Lattice

Figure 3




Determining the hand of the helical path by EM metal shadowing
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Determining the hand of the helical path by tilting specimen

Left hande,

- ’
Serrated Pattern on Left
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Helical 3D reconstruction Using the

Fourier-Bessel Method
DeRosier & Moore J. Mol. Biol. 52:335 1970

Scanned filament arcay

358 D. J. DEROSIER AND P. B. MOORE 1
Selection of Micrographs: Interactively indicate approximate helical axis
Sorting of images using L
optical diffraction
T Box filament
Indexing: Determination . )
of helical parameters Cross-correlate to oriented template
- for cross-correl ks
Display: Line printer Densitometry: Conversion Search for cross-correlation peaks
simulation of image by |«| of image to array of optical 1
over printing densities Fat curve 1o peaks
¥ L
. Box: Selection of a portion Reinerpolate filament o siraight helical axis
- of the digital image for L
transformation
¥ . Background subtraction
Floating: Reduction of + .
contributions of edge of Caleulare £t of straight filament
image to transform 1
¥ Search for layer lines
Display: Line printer o Transformation: Calculation 1
output of F and ¢ of Fourier coefficients, F Determine selection rule
and ¢
¥ Interpolate original filament for integral number of helical repeats
Display: Graphical Interpolation: Interpolation : 1 N
display of F, @ along |«| of F, & along layer line from
layer line calculated F, & Check selection mnule
¥ +
Analysis of layer line Data: Extract layer line data

Determination of position
and tilt of helix axis and

test of indexing Center fillament in box and determine oul-of-plane Ll
| -

¥ 13 Fit to reference dula set
Two-dimensional Three-dimensional 2 3
fltering resonstruction Average a number of data seis

! Y l
Display: Line printer Display: Line printer Average layer line data
simulation of image by ~ :l:plsy of Eectons of - . . .
overprinting e structure suitable Fiz 1. Schematic diagram of the PHOELIX helical process-

for contouring

ing package. A detailed deseniption of each step and the programs
usaed i= available as part of the PHOELIX distribution.

F10. 1. The scheme presented shows the flow of data in the process of three-dimensional recon-
struction.



Helical 3D reconstruction Using the

Fourier-Bessel Method
DeRosier & Moore J. Mol. Biol. 52:335 1970
Fourier Transf ,
Reciprocal Space Function F(F» &, He) = TGui(R) exp [in (& + [2)]. )
Selectionrule ¢ =tn 4+ um (2)
Real space function  p(ry ¢, 2) = “1:, Y gn.(r) exp(in ¢) exp (—2nilz[c) (3)

(structure)

/ gaa(r) = [ Gy (R (2w Rr) 2nRAR




Boxing & Floating Image

Non-Floated Floated




Straightening

SICZ”IIU’

| stazpowlinel
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lntcrcup 1 ; 32,0804
Intercept 2 ! 64.018
Intercept 3 ! 184,046
1 t 4 136,097
Intercept S | 188,
In t 6 ! 2080.816
Intercept 7 : 23].885
Intercept € ! 264.119

*in s_mark
making data file of layer 1ine values...

*in s_csx

making files for selaction rule 13 6...

making files for selection rule 28 13..,

making files for selection rule 41 19..,
=making files for selection rule 54 25...

*in s_checksx
checking selection rule,..
2> selection rule is 54 25 ; Chiss2 = 8,080639!

Layer 11ne spacing found to be : 8.888
*in s_Tloat

nouin? 10 256 x 2048
- Dinphy ng final floated image...

mm -rt
ning lly.r 1ine spacing of strafghtened, interpolated filament,..

{The selection rule of the final scaled ;;;;mn\ has not changed.

120.00

100.00

40.00

From: Carragher et al., JSB 116: 107-112 (1996)
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Gathering Amplitude and Phases
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Layer Line Data Set

Image _
Fourler

Transform F(R,-/2,llc) =G,

F(R,y,lje) = 2 G, (R)exp [in(y+in)], —> F(R,+x/2,lic) = Gy (foreven n)

-G, (for odd n)



Filament image corrections

Plane Shift and out of plane [l ¥ @ Ue) = 2Goi() exp [in (& + =/2)]

tilt corrections

Phases Differences in Mirror
symmetric peaks from the meridian
are predicted. 180° for odd n & O for

even n.

Plane shift and out of plane tilt
produce systematic phase differences
that can be corrected.

Z sin (w))
= .

Aagy, = —2n X tan ! (

Agyq = 4T RAX.




|_attice distortion Corrections

Alignemt of short filament
segments (1/3 of local repeat

length) against a reference
structure

stretch, bend, helical
twist, flattening, tilt,

shrinkage.

(Tilt out
of plane)

|
o

e
2

Y N

v

Uncorrected Corrected

Overall procedure

Digitise image

#

Estimate CTF and axial
repeat distance of tube

¢

Initial boxing and alignment
of whole repeats

¢

Run REFINE to align each repeat,
divide info 1/6-segments, and
find , X, Z, ¢ and rscale for each

#

Use x and z locations of sixths
to find orientations of
1/3-segments

!

Divide each repeat into 1/3-
segments, run SEARCH.COM10 g~ — — -,
find , X, z, ¢ and rscale for 1
each; plot variations along !

1
v Adjust parameters lo .:
minimise two-fold phase 1
residual '
Extract Fourier terms; find
two-fold phase residual

l

Make complete distortion-
corrected dataset

REFINE

Run SEARCH.COM on
whole repeats to find
@, X, Z, ¢ and rscale

{

Run ROTX.COM to
find 8 by fitting
Fourier amplitudes
to reference

l

Run REPEAT.COM to

find repeat distance Herate unil
by maximising parameters do

amplitudes on

layer-lines

Run SEARCH.COM again

/

Divide repeats into
1/6-segments; run
SEARCH.COM on each

SEARCH.COM

Estimate x and o by
comparing phases
across mefidian

Y

Find o by
comparing phases
across meridian

y

Find z, ¢, and Hterate until x does
rscale by comparing not change
phases to reference

Refine x by comparing l

phases to reference

Beroukhim & Unwin. 1997




Averaging several filament/images:

Case 1: ldentical helical symmetry (selection rule).
Case2: Slightly different symmetry.

Case 3: Different Helical classes



Case 1. Same symmetry (same selection rule)

1) Rotate and Z displace filaments to the same origin.
(Minimize phase differences in layer line data sets)

G;’Z(R, Z) — Gn,Z(Rs Z) e—inA¢+27tiAZZ

A®: Azimuthal angle difference
Az: Shift along the axis

(Aajy)

1 >l : Phase residual
n R'sZ" R',Zn —_R.,Zn
;;IGn,Z(Rj» Zn)l n ; ‘Z( ! )| |(X( J ) a( J )l

2) Average layer line data sets (CTF weighted average if
necessary)




Case 2: Slightly different symmetry due to
slight winding or unwinding of the helix
resulting in changes in axial repeat distance.

13 units in 6 Turns (LH) 54 units in 25 Turns (LH)



Very similar spacings & bessel orders (n) but
different layer line number ().
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13 units in 6 Turns (LH 54 units in 25 Turns (LH)




Case 3: Different Helical Classes

Method 1, Fourier Space Method:

Apply appropiate phase and radial shift to g,,;(r,Z) values from different particles and then
average them.

Use: If all particles have identical 2D lattices but different circumferential vectors.

DeRosier, Stokes & Darst. J. Mol. Biol. 289: 159 (1999)
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. . . 5.3 8o
F(R, ®,lfc) = Y.G..((R) exp [in (¥ + =/2)]. 4
" ‘e . / 252, »
Ina(r) = [ G, ((R)J (27 Rr) 2xRAR \ / , ‘\
\ :
p(r, ,2) = 3 ) gn.i(r) exp(in ¢) exp (—2milz/c) Y * // * “\
[ \ S i
e . '
0,0, '



Case 3: Different Helical Classes
Method 2, Real Space Method:

- Calculate separate 3D reconstructions for each filament.
- Carve out the asymmetric unit on each of the reconstructions.

- Generate a new artificial layer line set for each reconstruction by applying helical
symmetry (the same for all particles) to the carved out asymmetric unit.

- Align the artificial helices in reciprocal space and average their layer line data (as
normally done in Fourier-Bessel helical reconstruction).

- Obtain an averaged map by Fourier Bessel inversion.

Zhang et al., Nature 392: 835-840 (1998).
Yonekura & Toyoshima. Ultramicroscopy 84: 15-28 (2000)



Is It always a single view enough
for helical 3D reconstruction ?

Yes: If there is no overlap of Bessel functions
at the resolution of interest. No if there is
overlap.

| =-6n + 13m



Resolution Criteria

001 002 003 004 005

001 002 003 004 005
R (1/R)

> F(K)F(K)
FSC(k, Ak) = (k, k)

1/2
Y OR® Y IFz(k')|2:|

(k, Ak) (k,Ak)

1/32 116 1/106 1/8 1/6.4 1/53 1/457 1/4 (AY'

Frequencies

Fourier Shell Correlation




Kinesinl3-Microtubule Ring Complex Helical Reconstruction

15-start
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3D Helical Reconstruction

Examples (All done by Fourier-Bessel
method)

Ca-ATPase
Tubular crystal Microtubule-NCD complex
E, state (VO,)

Acto-myosin
complex



3D Helical Reconstruction
Using Real Space Methods

E;: l
ﬁi;
il

back-projection rec. helical rec.

From Sosa et al. JSB 118: 149-158(1997)

Individual images are boxed A 3D volumen is
out of the filament at each obtained by back-
assymetric unit axial spacing projection of the
and a view angle is assigned boxed images.

according to the helical
symmetry of the filament.



3D Helical Reconstruction Using Real Space Methods

A good estimate of the specimen helical symmetry is needed
Axial rise per subunit (h)
Azimuthal angle per subunit (D)

If an appropriate section rule for the specimen
Is know (I =tn+ um) hand Q can be
calculated as:

h=Cl/u
d =1-360/u
CcC=1/z

u: Num. of subunits per axial repeat.

t : Num. of turns per axial repeat.

| : Layer line number.

C: Helical axial repeat distance.

Z: Layer line height (distance from equator in reciprocal
space)




3D Helical Reconstruction Using Real Space Methods and
"single particle” refinement

Multi-reference
alignment with atomic
models

8 A resolution
microtubule map

In-plane

segments Rotational From: Lietal., (2002) Structure 10: 1317-1328.
Alignment

Box Filament



The Iterative Helical ~‘eal ~pace econstruction

)

Helically symmetric

/ 3D volume \ ; .
rotate azimuthally by 4° increment.

impose helical symmetry project onto 2D image

~ Ap, Az I 90 reference projections I
(helical parameters)

* multi-reference - -
determine helical symmetry by alignment set of raw images
least squares fit (thousands of segments from
helical filaments)
* In-plane rotation,
x-shift. y-shift
parameters

back projection /

Aligned, rotated images:
azimuthal angular assignments

Asymmetric 3D volume

From: Egelman E.H. (2000) Ultramicroscopy 85: 225-234.




Dynamin (r=0.2nm).
(Mears et al., 2007)

Filamentous
Bacteriophage
(r=0.8 nm)
Tarantula striated muscle Wang et al., 2009
myosin filament (r=2.5 nm).

UL NEE) G, 20T Bacteria Adhesion Pili

(r=1.25 nm)). Muetal.,
(2008)

Pomfret et al., (2007) J. Struct Biol 157: 106



L\, Close-by Vg

” Arginines 1 2

TMV @ 3.3 A Resolution

Ge & Zhou. PNAS 108: 9637 (2011)
(~1.9 x108 asymmetric units)

F-Actin @ 6.6 A resolution

Fujii et al. Nature 467: 724 (2010)
(~120000 asymmetric units)




Software for Helical 3D Reconstruction

Real space or single—particle-like

Fourier-Bessel _ _ .
Iiterative refinement software

- MRC Package - IHRSR (Egelman’s lab)

- Brandeis - SPRING (Sachse’ lab)

- Phoelix & Suprim - FREALIGN (Grigorieff’s lab)

- Unwin’s routines - PyHelix (Sosa’s lab)

- Toyoshima’s routines
- Ruby-Helix (Kikkawa’s lab)
- EMIP (Stoke’s lab)

- EMAN, SPARX, SPIDER



24 hix_run2.py H.S. v Nov 13 2009 r% A04621_A.f (Tkir 1.14)

Help File Mode Display Tools Plugins
Test Printer TIF to mre/suprim file format
Define pixel size etc
@ -- -- Single Filament procedures --
: Power spectrum average (CTF ring inspection)
Firefox UCSF- Estimate CTF parameters
Chimera

Do CTF Phase fipping correction

Eliminate density gradients

Po—
—

Straightening filament

=)
]
Q
@
(4

Normalize, apodize & pad image

Find selection rule & LL positions

Cutto integral number of repeats and reinterpolate

= 24 A04621_A_pflp_bs_vstr_itp_fts.raw (Tkll 1.6,2)
Extract layer lines

te lline ranges file

Fix xshift & out of plane tilt

Make avlist file for averaging

media -- Several Filament procedures -—-

Edit list with files to average

Shift Il phase origin to a template & make average

® include
® Exciude

OverPlot make overplot of selected LL

3]

My -- - General procedures ---

Computer Calculate 3D map

Calculate Fourier Correlation Shell

clude

Exit

® include
® Exclude

Office

DACTF slider. 1 HS Dec 12 2006 E]

® include
® Exciude

online Help

© PaCtF 391 6,617

91 11736402

us, Amp, Phase:
adius, Amp, Phase:

" R CTF2

1.40

Image: A04621_A_pflp_bs_vstr_vp.pow 0.617
Data:




Atomic Modeling & Docking of Higher
Resolution Structures into EM maps

Complete atomic model of the bacterial
flagellar filament by electron
cryomicroscopy

Koji Yonekura'>-*, Saori Maki-Yonekura'-* & Keiichi Namba-**

NATURE | VOL 424 | 7 AUGUST 2003 |

Nicotinic Acetylcholine Receptor at 4.6 A Resolution:
Transverse Tuni; v gior (1999) 288, 765-786 all

A. Miyazawa'?, Y. Fujiyoshi®, M. Stowell' and N. Unwin™
J. Mol. Biol. (1999) 288. 765-786
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