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Molecular Cryo-EM specimens

Single particles Icosahedral Helical crystal 2D crystal

Ribosome Hepatitis B Virus Actin-Myosin Aquaporin



Specimens and Resolution

Electron tomography

» Arbitrary samples, as long as they are thin enough for the electrons (whole cells, asymmetric
viruses, etc)

» Rather complicated sample preparation (usually)

» Data collection can be quite tedious

» Resolution achieved so far ~20A for ideal specimens (after motif averaging)

Single particles (large molecules or complexes)

»No crystallization required, >200 KDa limit

» Relatively simple sample preparation (after purification!)

»Highly homogeneous sample required, ~ Tmg/ml, ~100 ul per batch of cryo grids

» Resolution achieved so far ~3A for icosahedral particles and ~ 3A for non-symmetrical samples

Helical arrangements/crystals

» Filaments or tubes required

» Commonly found in viruses, cytoskeletal proteins, or some spontaneously formed tubes

» Component molecules can be small

» Rather complicated image processing, but 3D volumes can be calculated from single image

» Resolution achieved so far ~3A for ideal samples (bacterial flagella, TMV, acetylcholine receptor)

2D crystals

» Crystals needed (obviously!)

» Some proteins show tendency to form single-layered crystals (common for membrane proteins)
» Component molecules can be small

»Image processing is quite involved but well documented.

» Resolution achieved so far ~2A for ideal samples (aquaporins)



Examples of structures solved by EC
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Electron crystallography of 2D crystals
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How to prepare EM specimens of membrane crystals

Negative staining

« Embedding a specimen in a layer of
heavy metal salts, such as uranyl
acetate, phosphotungstic acid, and
ammonium molybdate.

« Provides high contrast for imaging

* Very quick and easy procedure

(1 2.5ul sample solution is adsorbed to a carbon-
coated grid (made hydrophilic by a glow discharge)

2 blot the grid with filter paper r
(@ wash with several drops of water)
@ stain with two drops of stain =
®) blot the grid with filter paper and completely dry o

Nobuhiko Gyobu



Negative staining

« Screening of crystallization conditions.
The information on the morphology and
quality of the specimen. Detection of
crystalline arrays.

« Crystallographic study at 2-3 nm
resolution. Rough estimate of the
molecular surface, shape and the
packing arrangement.

« Staining and drying results in distortions
of the molecules. Incomplete stain
embedding gives artifacts.




Atomic models of biological macromolecules
by cryo-electron microscopy

Protein Year Sample Preparation Embedding Medium
Bacteriorhodopsin 1990 2D crystals Glucose

Plant light-harvesting complex 1994 2D crystals Tannin

(LHC-I11)

o, B - tubulin 1998 2D crystals Tannin-glucose
Aquaporin-1 2000 2D crystals Trehalose
Acetylcholine receptor 2003 helical crystals Ice

Bacterial flagellar filament 2003 helical crystals Ice

Aquaporin-0 2004 2D crystals Glucose, Trehalose
Aquaporin-4 2005 2D crystals Trehalose
Microsomal Glutathione 2006 2D crystals Trehalose
transferase 1 (MGST1)

Microsomal prostaglandin E 2008 2D crystals Trehalose

synthase 1 (MPGES1)




Preparing flat specimens

Lack of specimen flatness is caused by:
the roughness of the carbon support film

-the wrinkling of carbon film supported by EM grid upon cooling (cryo-crinkling)

Solutions:

-Use of molybdenum grids (the thermal expansion coefficient is similar to that
of carbon)

-Use of flat carbon support films by spark-less evaporation



High-quality carbon support film

1mm
T

Spark-less evaporation Evaporation with sparkling



Back injection method

(a) (b) (c)
carbon l{l'm WWC

(o) 7% trehalose

2.5ul protein solution

buffer parafilm
molybdenum grid

(d) (e)

; Air drying

filter paper




(a)

carbon film

o
OO

molybdenum grid

(d)

Carbon sandwich method

Gyobu et al. J. Struct. Biol. (2004) 146, 325

(b) (¢)
ep=p=p -

7% trehalose

buffer parafilm

(€) ()

carbon film filter paper

2.5ul protein solution
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Image processing of 2D crystals
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After threefold crystallographic
averaging and replacement of image
amplitudes by diffraction amplitudes

CTF corrected but amplitudes can
be improved

After merging of several images to

increase SNR

Result after averaging of unit cells
by unbending in real space and

filtering in reciprocal space

e

Courtesy of Richard Henderson

at different stages

a

Area of digitized micrograph of a
BR 2D crystal in which only
electron noise is visible (plus hair)
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Single particles




Crystal




Why bother with 2D crystalline specimens?

Biological macromolecules are sensitive to electron radiation. A crystal has lots
of molecules related by an easily determined relation, thus allowing collection
of data with less radiation used (higher S/N).

To preserve high resolution details and minimize the radiation damage,
specimen images are recorded at low dose (5-20 e/A2).

There are caveats!

*To be useful, crystals have to be large to have as many protein
subunits as possible; homogeneous

°The order in the crystals has to be as perfect as possible

*There has to be only one layer.



Averaging 1s key for resolution

Why are e.g. SPA and 2DX
far superior in resolution to

ET?
one unit cell projection map 3d from several _
from 1image  images (10,000s specimen damage
(100s of unit cells) of unit cells)
dose
AVERAGING!

single image unsymmetrized symmetrized
class sum class sum



Definition of symmetry?

» Something is symmetric when it is invariant (i.e.,
does not change) under some transformation

»» For material objects, there is a myriad of
possibilities: a cylinder is symmetric under arbitrary
rotations about its axis, a sphere under any
rotation, etc.

¢ There are continuous symmetries, and discrete,
such as in polyhedra, a crystal, helical object, etc.

» A symmetry group is the set of all symmetry
operations applicable to an object



Molecular Symmetry (applies to SPEM, and 2DX)

Cyclic symmetry Dihedral symmetry

D6

Tetrahedral (4) symmetry  Octahedral (8) symmetry Icosahedral (20) symmetry

Insect Ferritin



A crystal 1s an array of translationally repeating units

A 2D crystal 1s generated by translation of a unit cell along a
linear combination of two fundamental, linearly independent
vectors (a and b).
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Courtesy of Michael Landsberg



Symmetry operations: Rotation

n-fold rotational symmetry dictates that rotation about a point by an
angle of 360° N generates an image indistinguishable from the original

S




Symmetry operations: Reflection

« aka mirror or bilateral symmetry

* Any two points perpendicular to and equidistant from the
axis (in 3D, or a line in 2D) of reflection are identical



Symmetry operations: Glide reflection

Translation by %2 unit cell combined with a reflection about
the axis of translation



Crystallographic Symmetry

A crystallographic space group is the mathematical group
of symmetry operations which apply to both the given unit
cell and the crystal array

There are 230 possible crystallographic space groups in
3D (65 for proteins and chiral molecules)

For 2D projection maps, there are 17 plane groups

These are different (but correlate somewhat trivially) to
the 17 2D space groups which describe all possible 2D
crystal arrangements



Primitive and centered cells

15 of the 17 plane groups are primitive cells, the remaining
2 are centered cells

— A primitive cell is a minimal region repeated by lattice translations
(15/17)

— A face-centered cell is larger than the alternative primitive cell,
and has internal repetition

......Q‘. .....E...‘.




There are 17 plane groups
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Plane groups and 2D space groups

Plane group Unit cell geometry Highest order Point group Glide/screw 2d space group
(crystal system) rotation

p1 rhomboid (oblique) 1 1 N P1
p2 rhomboid (oblique) 2 2 N P2
pm rectangle 1 m N P12
pg rectangle 1 m Y P12,
cm rectangle 1 m N C12
p2mm rectangle 2 2mm N pP222
p2mg rectangle 2 2mm Y P222,
p2gg rectangle 2 2mm Y P22,2,
c2mm rectangle 2 2mm N C222
p4 square 4 4 N P4
p4mm square 4 4mm N P422
p4gm square 4 4mm Y P42,2
p3 rhombus (hexagonal) 3 3 N P3
p3m1 rhombus (hexagonal) 3 3m N P321
p31m rhombus (hexagonal) 3 3m N P312
p6 rhombus (hexagonal) 6 6 N P6
p6émm rhombus (hexagonal) 6 6mm N P622




How can we take advantage of the symmetry?

In single particles, we average the parts that are
equivalent due to the symmetry of the problem, which
translates into a better signal to noise ratio.

In helical aggregates and crystals, the Fourier
transform shows the symmetry of the problem, with
enhanced features visible in the power spectra.

“DIFFRACTION"!!



What is the image of a 2D crystal according to linear image theory?

-~y | | ; | a) Representation of a 2D crystal.
| 1 | b)  Representation as the convolution of the object with
Bl | the lattice.

I I — c) The FT of a has points on a reciprocal lattice
,which is related to the image lattice. The position of
the spots in the transform is determined by the image
lattice. Whereas the Amplitude and phase values

depends on the structure of the repeating motif in the
image.
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... the image is the convolution of 3 factors: Image processing is about:
1) increase SNR form molecular structure
1) molecular structure : : .
: —)- 7 ) correction of lattice disorder
2) the lattice structure : h
3) the CTF 3) correction for CTF modulation of

diffracted waves.



Analysis of the Image into Fourier Components

Aim: To obtain reliable measures of the
amplitude and phase of the frequency
components.

Original Fourier
Image transform

Extraction Fourier
and correction of synthesis

Fourier components




Fourier transforms of images of crystalline specimens

Note: high radius
_ = high frequency
« Each diffraction spot = high resolution

represents a different
(spatial) frequency

« The amplitude of each spot is
unique to the structure of the
object

 When a Fourier transform of
a crystal image is calculated
with a computer, one also
gets the phase at each
spatial frequency




The Fourier transform plays a central role in understanding the
analysis of diffraction data

—

The electron density intensity O (R) everywhere in a protein crystal, can be represented as a sum of cosines.

This Fourier series illustrates the point in 1D:
Each cosine must have its own amplitude

F(n) phase a(n) and periodicity L.

p(x) = ,Z)F(n)cos{—Zn%x + (x(n)}
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Basics of image processing

Real space in Angstrom

Real space in pixel

3 cosine functions are characterized by
frequencies, amplitudes and phases
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Frequency tells you about image
spacings

Amplitude tells you “how much” of a
frequency component is present

Phase tells you “where” the
frequency components are located
in the image



Basics of image processing

Real space in Angstrom Real space in Angstrom
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Basics of image processing

Real space in Angstrom Fourier space in 1/Angstrom
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Basics of image processing

Fourier space in 1/Angstrom Real space in Angstrom
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Basics of image processing

Russ, The Image Processing Handbook, 2007
¢/ L/
W,
7
%,
%

% Real space

Fourier space

6.5 Three sinusoidal patterns, their frequency transforms, and their sum.

Chiu et al. Biophysical Journal
(1993) vol. 64 (5) pp. 1610-25




The Fourier transform plays a central role in understanding the

analysis of diffraction data

—

The electron density intensity Q.. (R) everywhere in a protein crystal, can be represented as a sum of

cosines.

This Fourier series illustrates the point in 1D:

Each cosine must have its own amplitude

p(x) = ,Z)F(n)cos{—Zn%x + (x(n)}

P, (i@) = EF(gh,k,l)COS{_zngh,k,l R+ a(gh,k,l)}

h.k,[=0

R - (g ~i27(8,,, )R
pc(R) B EF(gh,k,l)ela(g"’k’l o727 St
h k=0 N \

\

amplitude

phase  gpatial frequency

F(n) phase a(n) and periodicity L.

e =cosfO+isinb



Resolution and spatial frequency

A “COMPLICATED”
STRUCTURE
Chiu et al. (1993)
Biophys J. 64: | L
19101022 . LOW-RESOLUTION
FEATURES
HIGH-RESOLUTION
FEATURES

1/s,

FIGURE |  An illustration of a one-dimensional object potential function v(x ) at the top of the figure which can be decomposed into three cosine
waves with different frequencies (5), amplitudes (A4), and phases («) with respect to a common origin. The mathematical expression is v(x) =
Z A;(s) cos (2=8;x + «;). (provided by A. Avila-Sakar and V. Mootha)

RESOLUTION, “d”, AND SPATIAL FREQUENCY, “s = 1/d”

ARE “THE SAME THING”



The Fourier transform plays a central role in understanding the
analysis of diffraction data

—

The electron density intensity © (R) everywhere in a protein crystal, can be represented as a sum of

cosines.
h.k,l=0
fg)= F(S eia(E)e-izn@R’dg
p(R)= [F(S)et e,

| \

amplitude phase spatial frequency

- o ialS) S is the 3D spatial frequency vector,
F(S)=F(S)e is the structure factor  \hijch replaces the discrete vector g,

p(ie) = [F(S)e ™™ *as

—

In other words, the electron density p(R) is the (inverse) Fourier transform of the structure factor

Experimentally we need to measure F(S) = F(S)e™“® by measuring

amplitude and phase at each discrete spatial frequency



The Fourier transform of a crystal represents discrete, regular samples
of the continuous Fourier transform of the molecule

Convolution of one unit cell with a 2-D lattice produces a 2-D crystal

] *

—

The electron density function of a crystal, O, (R) can be described in terms of two separate functions
PM(R)and L(R).

—

PM(R is the electron density function of the unit cell

L(fg) is the lattice function that marks the position of every unit cell

o )= ) 1(7) - [ (B~

This integral is difficult to solve in real space!!!



Convolution: the convolution of an integral expresses the amount of overlap of one function f, as it is
shifted by another function f,, is denoted fl * f2 and defined over an infinite range as:

Convolution:  f, * f, =ﬁwwﬁ(x —t) f,(t)dt = c(x)

f, >




The Fourier transform of a crystal represents discrete, regular samples
of the continuous Fourier transform of the molecule

..........
..........
..........

But much easier to solve in Fourier or reciprocal space!!!

il 8 (8] - o R} o{R)




The Fourier transform of a crystal represents discrete, regular samples
of the continuous Fourier transform of the molecule

..........
----------
..........

..........
..........
----------

..........

L(]_é) = E@(ié — [_é ) is a sum of Dirac delta functions, one at every lattice point
J

J

... and its FT is another sum of Dirac delta functions but this time in reciprocal space

FT[L(E)] =FT Ea(k —I_éj) = Eé(g - §h,k,l)

h.k,l

FTI:L(E)] is the reciprocal lattice of the crystal lattice L(}_é)




The Fourier transform of a crystal represents discrete, regular samples
of the continuous Fourier transform of the molecule

..........
----------
..........

..........
..........

..........

FT[L(E)] =FT Eé(k —I_éj) = 25(5 - gh,k,l)

h.k,l

The points in the reciprocal lattice are determined by reciprocal lattice vectors a’, b"and ¢,

which are themselves determined by the crystal lattice (unit cell) vectors.

. bxc . cxa . axb
a-bxc a-bxc a-bxc

Then the vector to an arbitrary reciprocal lattice point in Fourier space can be written in

terms of reciprocal lattice vectors a*, b”and ¢” and of Miller indices.

8, =ha +kb" +lc’

The Miller indices (hkl) provide a unique identification for every point in the reciprocal lattice.

THUS they serve to identify every diffraction spot in a diffraction pattern



The Fourier transform of a crystal represents discrete, regular samples
of the continuous Fourier transform of the molecule

il 8 8] - o R} {R)

—

FT[,OC (R)] = FT[pu(l_é) X L(E)] = Eh’k’lF(ghkl)(S(S ~ &)

In other words, the Fourier Transform of a crystal is ZERO everywhere except at the
reciprocal lattice points g,,,, where it has the same value as the Fourier Transform of the unit
cell F(S) would have at that spatial frequency (S).



What is the image of a 2D crystal according to linear image theory?

-~y | | ; | a) Representation of a 2D crystal.
| 1 | b)  Representation as the convolution of the object with
Bl | the lattice.

I I — c) The FT of a has points on a reciprocal lattice
,which is related to the image lattice. The position of
the spots in the transform is determined by the image
lattice. Whereas the Amplitude and phase values

depends on the structure of the repeating motif in the
image.

. * 9 $—¢ 3
o ® © ® o+ 2 d) Miller indices (h,k) are used to refer to a particular
® o+ @ +— 1 lattice point in the transform
e o > ® @ + 0k=
. e <+ + -
*« & ® & ¢+ + 2
¢- ¢ ——b—a3
-2-10 1 23
h=

... the image is the convolution of 3 factors: Image processing is about:
1) increase SNR form molecular structure
1) molecular structure : : .
: —)- 7 ) correction of lattice disorder
2) the lattice structure : h
3) the CTF 3) correction for CTF modulation of

diffracted waves.



Analysis of the Image into Fourier Components

Aim: To obtain reliable measures of the
amplitude and phase of the frequency
components.

Original Fourier
Image transform

Extraction Fourier
and correction of synthesis

Fourier components
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Amplitude and phases

Amplitudes

Y
Y

Phases

Phase information dominates
image perception




Imaging for phases and/or for amplitudes

- f >
F4 l4
O3 (04
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O1 F 0 axis
_>
I3
F'y
Object Lens Back Image
focal-plane plane

Figure 1.1. Formation of an image and diffraction pattern by a lens from an infinite periodic
object. For parallel, monochromatic illumination, the transmitted and diffracted beams are
focused into spots, Fo, Fq, F¢’ etc., which form the diffraction pattern in the back focal-plane of
the lens at a distance f, the focal length, from the lens. Only three diffraction spots are shown
for clarity. The diffracted beams recombine to form a magnified image in the image plane. Note
that the image is inverted with respect to the object, but the diffraction pattern is not. In effect,
the screen of the electron microscope is in the plane I1—I5 in the imaging mode and in the plane
F,—F+" in the diffraction mode.



Field
amplitude

Object plane

Y
|

e et
* e

— 'T><'_j .
e ——— _—»__H_;_*
)
Fraunhofer pattern
Field
amphitude
! Field

amplitude

Transform
or focal plane

Image plane

Imaging for phases and/or for amplitudes

Plane-wave
Input

Exit Wave

ev koz

v
Object

v
T(x)

v

Lens

v

F{Tix) « H(s)

v

Wave Propagation
to the Image Plane

Image Wave

Image
Intensity

v

T(x) = h{x)

¥

Detector

v
I(x)




Diffraction amplitudes are better than image amplitudes

We can collect diffraction data directly where the CTF modulation is minimal: Amplitudes are good but phases are lost

The phases of the structure factors are lost
when diffraction intensities are recorded.

p(ie) = [F(S)e > *ds
F(S) = F(§)e™S

‘Ijscattered x F(g)ela(g)
I(S)=W -

W« F(5)e™ - F(S)e ™ = F2(S5)

sca




Image processing of 2D crystals

r o 3 : ~

After threefold crystallographic
averaging and replacement of image
amplitudes by diffraction amplitudes

CTF corrected but amplitudes can
be improved

After merging of several images to

increase SNR

Result after averaging of unit cells
by unbending in real space and

filtering in reciprocal space

e

Courtesy of Richard Henderson

at different stages

a

Area of digitized micrograph of a
BR 2D crystal in which only
electron noise is visible (plus hair)
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UNBENDING
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frf=f=H® f(1)

frg=f (-1 ® g

correlations

autocorrelation

two copies of
same object

crosscorrelation

two similar objects
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offset

origin




MERGING
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MERGING

R. Henderson et al. / Structure of purple membrane from Halobacterium halobium

mAveraging of
(10, 3) 47 (5.8) a.4n . dafa From
different images
in the MRC/2dx
software is done
in Fourier space
by dealing with
each reflection
individually:

Amplitudes and

(1.13) 4.04 Phases are
averaged by
/ taking 1/IQ? as

weight.

J On the left, the
Phase averaging

Fig. 7. Graphical comparison of all phases determined for six spots with resolution beyond 4.7 A. Phases are plotted as vectors on a |s Shown
polar diagram with the length of each vector being proportional to 1/1Q?, Thus the strongest spots show up as longer vectors. The .
result of the summation of all the vectors is also shown as a vector, but this is plotted at 1/4 of its true length. The direction of this gl"dpthdlly.

vector is our best estimate of the phase of the Fourier component in the structure, and its length can be used to provide an estimate of
the error.

Stahlberg




3D structure analysis requires views from multiple directions

Projection theorem:

When a 3-D object is projected to
produce a 2-D image, its
Fourier transform is a 2-D slice
(NOT a projection) of the 3-D
transform of the oject

These 2-D slices always pass
through the origin

and thus are called’central
sections”

When data from many different
“central sections” are
combined

one builds up the full, 3-D Fourier
transform
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XBL 925471



The reciprocal lattice of a 2D crystal consists of lattice lines

Central Section




Accumulating merged images with tilts

“untilted

)

low tilt and various tilt axes

tilt axis



Accumulating merged 1mages with tilts

low tilt high tilt and various tilt axes

A

A's)
Z"

tilt axis



Interpolation along Lattice Lines

To apply the 3D FT-!, lattice lines have to be uniformly sampled.

Laﬁicé Liiles Laﬁicé Liiles



Examples of Lattice Lines

(1,-7) (3,-8) (5, -6)

T L]
0070 0.000 0.025 0.050 0.075 0.000 0.025 2.050 2075
ZF (A" AR

Fig. 1. Lattice line data. Plots of amplitudes (lower panels) and phases (upper panels) along the z* axis for three selected reflections. The fitted lattice
lines were produced by weighted least squares fitting and the resulting errors are shown.



Sampling of Fourier Space
after combination of all central sections
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