TimeScapes: transforming timeseries into spatial images

Julio Kovacs, ODU

General goal: discovering connections between local and global processes

- Fast, local processes: $X_i(t)$
- Slow, global process: a(t) ("activity function")
- Ranking of the i^{th} process:

$$R_{X,a}(i) = I\left(\left|\frac{dX_i(t)}{dt}\right|, a(t)\right)$$

This ranking provides a measure of the relevance or contribution of each of the local processes $X_i(t)$ to the global process a(t).

- *I* is a statistical measure of dependence, such as:
 - Pearson correlation coefficient (current release).
 - Mutual Information (in the upcoming release).

The approach is of general applicability

- The index *i* could correspond to any type of spatial attribute.
- It could also denote connections between pairs, triplets, ... of locations in space.
- Our applications will deal with single and pairwise locations.

Flexible fitting: DDFF and MDFF

Fitting of Ca-ATPase by "Damped Dynamics Flexible Fitting" (Kovacs et al., *Biophys. J.*, 2008) MDFF is the best known and *de facto* approach for flexible fitting at atomic detail, but it requires a full MD trajectory.

As such, MDFF can benefit from the TimeScapes analysis presented here.

Application to Molecular Dynamics trajectories

- *TimeScapes* can perform two fundamental types of analyses on MD trajectories:
 - 1. Hinge-bending of protein molecules ("pivot analysis").
 - 2. Pairwise residue distance geometry ("contact analysis").
- The results of these analyses (i.e., the $R_{X,a}(i)$ as a function of i) can be mapped onto the 3D molecular structure for visualization.
- The "heat maps" thus obtained provide a picture of the regions of the molecule that are relevant for the significant events encoded in the long trajectory.

First step: calculation of the activity functions

- Three types of activity functions can be computed in *TimeScapes*:
 - 1. RMS fluctuations in a sliding time-window.
 - 2. Rate of contact-forming and -breaking events. This uses a coarse-grain model of 1 atom per side chain, and can be done by means of either of 2 types of graph:
 - a. A simple distance-cutoff graph;
 - b. A "Generalized Masked Delaunay" graph.

This approach needs a preliminary smoothing of the distance time-series in order to suppress high-frequency noise.

RMS fluctuation activity

• Computed as "standard deviation" of the whole ensemble of atomic Cartesian coordinates over a time-window centered at successive time frames. The values being averaged are weighted with a Gaussian function:

$$\sigma_i^2(t) = \sum_{s=t-\delta}^{t+\delta} \|p_i(s) - \bar{p_i}(t)\|^2 \cdot G(s-t)$$

$$\text{RMS}(t) = \sqrt{\frac{1}{N}\sum_{i}\sigma_{i}^{2}(t)}$$

$$G(s-t) =$$
 Gaussian whose FWHM is δ

Simple distance-cutoff graph

- Contacts are defined by pairs of representative atoms that are closer than a prescribed cutoff distance.
- Careful choice of the cutoff distance is important.

Generalized Masked Delaunay graphs (GMD)

Masked Delaunay graph: masking out edges of the Delaunay graph not contained in the protein

3D example: Villin

The *Generalized* Masked Delaunay graphs are higher-order versions of the above, and are used to define a "contact metric" for a "recrossing filter", which suppresses spurious events due to noise and sampling granularity. (Metric = smallest-order graph that contains a given edge.)

Example: activity measures for BPTI

These three activity functions look very similar to one another. (But this isn't always the case; see Wriggers et al., *J. Chem. Theory Comput.*, 2009, 5:2595-2605.)

BPTI trajectory is from the Anton millisecond simulation from Shaw et al., 2010.

Pivot analysis: detection of hinging hot spots

Pivot analysis: detection of hinging hot spots

For this, we apply our basic equation:

$$R_{X,a}(i) = I\left(\left|\frac{dX_i(t)}{dt}\right|, a(t)\right)$$

to the variables X_i = pseudo-dihedral angle #*i*, with I = either CC or MI, and a(t) = each of the 3 activity functions:

- RMS fluctuations
- cutoff graph
- GMD graph

Pivot analysis for BPTI

Contact analysis

Here, the index *i* ranges over *pairs* of residues, and the variable $X_i(t)$ is the distance between the corresponding pair of residues. Then the ranking function $R_{X,a}(i)$ can be displayed as a matrix:

MI contact matrix for BPTI, with a(t) = RMS fluctuation

Contact analysis

This contact matrix is symmetric and has a banded structure. It can be projected onto either axis, and then mapped onto the 3D chain:

Outlook to Timescapes 1.4 (Summer 2016): Advantages of Nonlinear MI vs. Linear CC

We looked at a heat-induced unfolding trajectory of EnHD protein (Daggett lab, UW). CC profiles for graph-based activities were weak, while the MI results were more consistent with analysis based on RMS fluctuation activity:

Overview of the TimeScapes package

TimeScapes is a bundle of 10 Python programs. We will demonstrate the use the following four:

- **agility.py**: computes the RMS fluctuation activity
- terrain.py: computes cutoff-based and GMD-based activities
- tagging.py: performs pairwise-residue contact-distance analysis, using the activity functions from agility or terrain
- turning.py: performs pivot-angle analysis, using the activity functions from agility or terrain

The last two programs also output PDB files containing the ranking coefficients in the B-factor field, for visualization purposes.

agility.py

The basic usage is:

agility.py infile1 infile2 delta outname

where:

infile1: PDB file, used for mass assignment and optional least-squares fit.

infile2: Trajectory file.

delta: Full Width at Half Maximum (FWHM) of Gaussian-weighted window. FWHM = $2\sqrt{2\ln 2}\sigma$, where σ is the standard deviation.

outname: Basaname prefix for output files.

terrain.py

The basic usage is:

terrain.py infile1 infile2 cut1 cut2 delta gtype outname

where:

infile1: PDB file, used for coarse-model assignment.

infile2: Trajectory file.

- cut1: Values up to cut1 are considered true contacts.
- cut2: Values between cut1 and cut2 define the buffer zone in the recrossing
 filter, while values above cut2 are considered non-contacts.

delta: Smoothing parameter for the Parzen window Gaussian function.

gtype: Graph type: either GMD or Cutoff.

outname: Basaname prefix for output files.

tagging.py

The basic usage is:

tagging.py infile1 infile2 infile3 outname

where:

infile1: PDB file, used for coarse-model assignment.

infile2: Trajectory file.

outname: Basaname prefix for output files.

turning.py

The basic usage is the same as for tagging:

turning.py infile1 infile2 infile3 outname

where:

- infile1: PDB file, used for coarse-model assignment.
- infile2: Trajectory file.

outname: Basaname prefix for output files.

Running *TimeScapes* on the 'chignolin' trajectory

This is a 300 ns folding trajectory of a 10-residue peptide, using GaMD.

Running TimeScapes on the 'chignolin' trajectory

300 ns folding trajectory, showing convergence to the native PDB structure (red)

Running *TimeScapes* on the 'chignolin' trajectory

agility output files

agility_10_minima.log
agility_10_segmentation.dat
agility_10_transitions.log

RMS fluctuation activity file, used by tagging and turning

M	mmunulu	Mmmm	MMM	Mryhuw	handhaa	mulin
	500	1000	1500	2000	2500	3000
			frame #			

value	derivative	
3.164843	0.000000	0
3.135847	-0.028997	0
3.103421	-0.032426	0
3.069534	-0.033887	0
3.036775	-0.032759	0
3.006153	-0.030622	0
2.978774	-0.027379	0
2.956830	-0.021944	0
2.940008	-0.016822	0
2.929659	-0.010348	0
2.929443	-0.000216	0
2.944859	0.015416	0
2.984017	0.039159	0
		•
	value 3.164843 3.135847 3.103421 3.069534 3.036775 3.006153 2.978774 2.956830 2.929659 2.929443 2.9244359 2.984017	valuederivative3.1648430.0000003.135847-0.0289973.103421-0.0324263.069534-0.0338873.036775-0.0327593.006153-0.0306222.978774-0.0273792.956830-0.0219442.940008-0.0168222.929659-0.0103482.929443-0.002162.9840170.039159

terrain output files

terrain_Cut_6_7_10_activity.dat
terrain_Cut_6_7_10_events.log
terrain_Cut_6_7_10_minima.log
terrain_Cut_6_7_10_segmentation.dat
terrain_Cut_6_7_10_transitions.log

terrain_GMD_2_3_10_activity.dat terrain_GMD_2_3_10_events.log terrain_GMD_2_3_10_minima.log terrain_GMD_2_3_10_segmentation.dat terrain_GMD_2_3_10_transitions.log total, contact-forming, and -breaking activities (cutoff)

total activity and derivative (cutoff)

total, contact-forming, and -breaking activities (GMD)

total activity and derivative (GMD)

frame #

cutoff graph activity
GMD graph activity

tagging output files

tagging_agil.log tagging_agil_dump.dat tagging_agil_pairwise.dat tagging_agil_pairwise_resname.dat tagging_agil_pairwise_resname_count.dat tagging_agil_pairwise_resname_max.dat tagging_agil_pairwise_resname_normalized.dat tagging_agil_projected.dat tagging_agil_projected.pdb
tagging_terr_Cut.log
tagging_terr_Cut_dump.dat tagging_terr_Cut_pairwise.dat tagging_terr_Cut_pairwise_resname.dat tagging_terr_Cut_pairwise_resname_count.dat tagging_terr_Cut_pairwise_resname_max.dat tagging_terr_Cut_pairwise_resname_normalized.dat tagging_terr_Cut_projected.dat tagging terr Cut projected.pdb tagging terr GMD.log tagging_terr_GMD_dump.dat tagging_terr_GMD_pairwise.dat tagging_terr_GMD_pairwise_resname.dat tagging_terr_GMD_pairwise_resname_count.dat tagging_terr_GMD_pairwise_resname_max.dat tagging_terr_GMD_pairwise_resname_normalized.dat tagging_terr_GMD_projected.dat tagging_terr_GMD_projected.pdb

residue pairwise Pearson correlation matrix

correlations projected to sequence

PDB file with the projected correlations in the B-factor field. See in VMD.

tagging: visualizing the output

turning: output files

turning_agil.log turning_agil_differentials.dat turning_agil_dihedrals.dat turning_agil_dump.dat turning_agil_pairwise_resname.dat turning_agil_pairwise_resname_count.dat turning_agil_pairwise_resname_max.dat turning_agil_pairwise_resname_normalized.dat turning_agil_turning.dat turning_agil_turning.pdb turning_terr_Cut.log turning_terr_Cut_differentials.dat
turning_terr_Cut_dihedrals.dat turning_terr_Cut_dump.dat turning_terr_Cut_pairwise_resname.dat turning_terr_Cut_pairwise_resname_count.dat turning_terr_Cut_pairwise_resname_max.dat turning_terr_Cut_pairwise_resname_normalized.dat turning_terr_Cut_turning.dat turning_terr_Cut_turning.pdb
turning_terr_GMD.log turning_terr_GMD_differentials.dat turning_terr_GMD_dihedrals.dat turning_terr_GMD_dump.dat turning_terr_GMD_pairwise_resname.dat turning_terr_GMD_pairwise_resname_count.dat turning_terr_GMD_pairwise_resname_max.dat turning_terr_GMD_pairwise_resname_normalized.dat turning_terr_GMD_turning.dat turning_terr_GMD_turning.pdb

timeseries of dihedral angles and their abs. diff.

correlations of pivot angles projected to sequence

PDB file with the projected correlations in the B-factor field. See in VMD.

turning: visualizing the output

