Sculptor

Manuel Wahle Willy Wriggers 4/25/2016, NYSB

Overview

- Sculptor
 - Multi-resolution modeling software package
- Emphasis on visualization
 - Efficient ("real-time"), high-quality visualization
- Sculptor Architecture
- Tutorials

Visualization

- Volumetric
 - DVR
 - Iso surfaces
 - Cross section
- Atomic Models
 - Static and dynamic scenes
- Global lighting
 - SSAO

3

Volume Rendering

- Direct volume rendering (DVR)
 - Transfer function
 - Surface shading

Atomic Models

- Conventional geometry based
- Efficient vertex- and pixel-shader based
 - Large complexes
 - Protein dynamics
 - Cartoon, tube, VDW

Dynamic Atomic Models

- Large time-varying structures not trivial to visualize
 - Geometry changes with every frame
 - CPU is bottleneck while GPU underutilized
- So: move computation from CPU to GPU
 - CPU computes path, GPU extrudes geometry

SSAO

- Ambient occlusion
 - Surface features like creases, pockets prevent areas from receiving light

- Some regions appear darker than other
- However, standard lighting is local
 - Computed at every vertex for view and light position(s) -> parallelizable and fast
 - Ignores other geometry
- Global lighting is too expensive for real-time
 - Ray casting

7

SSAO

- Solution: screen space ambient occlusion
 - Approximation to global lighting
- Computed not on the geometry, but using data within the image plane (pixel data)
 - Taking advantage of rendering pipeline

SSAO

- Rendering pipeline computes per-pixel color and depth during rasterization
- Back project from viewpoint through each pixel
- Sample points/lines in a sphere for occlusion ratio

Sculptor Architecture

- C++, OpenGL, Cg
- Sculptor almost only UI
 - About 50k SLOC
- SVT Scientific Visualization Toolkit
 - About 100k SLOC

17

Tutorials

Available at http://sculptor.biomachina.org/tutorials.html

We will cover:

- 1 Visualization of Molecular Structures
- 2 Visualization of Volumetric Data
- 4 Manual Docking and Correlation-based Refinement
- 8.2 Detecting Alpha Helices in Intermediate Resolution Maps

1 Visualization of Molecular Structures

- Load 1OS5.pdb
 - Switch to new tube
 - Add to graphics mode stack
 - Select residue seq. from 371 to 563
 - Change to VDW mode, structure coloring
 - Get rid of water atoms:
 - Add to graphics mode stack
 - Select either "water atoms" or "residue name" HOH
 - Change mode to off

19

2 Visualization of Volumetric Data

- Load rnap.situs
 - Play with iso surface
 - Go to DVR tab
 - Try to create transfer function
 - Grey line is opacity

4 Manual Docking and Correlation-based Refinement

- Load 2rec15.situs, 2recmon.pdb, 2REC
 - Set 2rec15 to iso surface level 1.0, half transparent
 - Set 2recmon to "New Tube" graphics mode and to a "Solid" bright color
 - Set 2REC to New Tube, different color, and hide it
- 2recmon initially placed perfectly, so misalign a little
- Make 2recmon the probe, then select Docking-> Refinement
 - Set resolution to 15
- Load 2recmon again, change to new tube, then try to align to next position, make probe, then refine

2:

8.2 Detecting Alpha Helices in Intermediate Resolution Maps

- Load emd 1740 Al.situs
 - Volume -> Threshold (minimum 2.5, max OK)
 - Volume -> Local normalization (sigma 2.5)
 - Volume -> Gaussian (1.5)
- Docking -> Volume Tracer
 - 11 "Traced Objects", "Resolution" 6.8
 - Show "Search Template"
 - Windows 1 thread, others 4
 - "Execute"