IMAGE FORMATION

SUPPLEMENTARY

- Adding amplitude contrast to CTF
- Phase Plate

TOGETHER:

$$A\cos(\gamma(k)) + \sqrt{1 - A^2} \sin(\gamma(k)) = \sin(\gamma(k) + \alpha)$$

Amplitude contrast coefficient

What do we want from phase plate ? Phase Contrast

 $sin(\gamma(k))$ + Amplitude Contrast $sin(\gamma(k) + \alpha)$

+ Phase Plate $sin(\gamma(k) + \alpha + \varphi)$

TEM imaging modes AND Various PP Designs

Contrast development

 $\Delta z = 0.5 \,\mu m$ (underfocus)

No Phase Plate

φ = 70 °

 $\Delta z = 2 \ \mu m$

Where will we benefit from phase plate?

- Anything-
 - Pro: Low resolution contrast makes it easier to align particles with different orientation.
 - Con: Slower data acquisition with more uncertainty of device behavior
- Small molecules
 - Allow low defocus to be used that reduces the dampening effect of the envelop function.

Further readings

Phase Plate –

- Radostin Danev et. al. Using the Volta phase plate with defocus for cryo-EM single particle abalysis eLife 2017;10.7554/eLife.23006
- Amplitude contrast coefficient values
 - K. Yonekura et. al. Electron energy filtering significantly improves amplitude contrast of frozen-hydated protein at 300 kV. J. Struct. Biology 156 (2006) 524-536.