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Molecular Cryo-EM specimens



Specimens and Resolution

Single particles (large molecules or complexes)
‣No crystallization required, >200 KDa limit
‣Relatively simple sample preparation (after purification!)
‣Highly homogeneous sample required, ~ 1mg/ml, ~100 µl per batch of cryo grids
‣Resolution achieved so far ~2.5-3Å for icosahedral particles and ~ 2-3Å for non-symmetrical samples

Helical arrangements/crystals
‣Filaments or tubes required
‣Commonly found in viruses, cytoskeletal proteins, or some spontaneously formed tubes
‣Component molecules can be small
‣Rather complicated image processing, but 3D volumes can be calculated from single image
‣Resolution achieved so far ~3Å for ideal samples (bacterial flagella, TMV, acetylcholine receptor)

2D crystals
‣Crystals needed (obviously!)
‣Some proteins show tendency to form single-layered crystals (common for membrane proteins)
‣Component molecules can be small
‣Image processing is quite involved but well documented.
‣Resolution achieved so far ~2Å for ideal samples (aquaporins)



Examples of structures solved by EC

90°



2D crystals



Electron crystallography of 2D crystals



2D crystals under the microscope



Nobuhiko Gyobu

How to prepare EM specimens of  membrane crystals















2D crystals under the microscope



Image processing of 2D crystals at different stages

Courtesy of Richard Henderson

Result after averaging of unit cells 
by unbending in real space and 

filtering in reciprocal space

After merging of several images to 
increase SNR

CTF corrected but amplitudes can 
be improved 

After threefold crystallographic 
averaging and replacement of image 
amplitudes by diffraction amplitudes 

Area of digitized micrograph of a 
BR 2D crystal in which only 

electron noise is visible (plus hair)



Single particles



Crystal



Why bother with 2D crystalline specimens?

Biological macromolecules are sensitive to electron radiation. A crystal has 
lots of molecules related by an easily determined relation, thus allowing 
collection of data with less radiation used (higher S/N).

To preserve high resolution details and minimize the radiation damage, 
specimen images are recorded at low dose (5-20 e-/Å2).

There are caveats!

•To be useful, crystals have to be large to have as many protein 
subunits as possible; homogeneous

•The order in the crystals has to be as perfect as possible

•There has to be only one layer.



Averaging is key for resolution

single image unsymmetrized
class sum

symmetrized
class sum

one unit cell projection map
from 1 image

(100s of unit cells)

3d from several
images (10,000s 

of unit cells)

Why are e.g. SPA and 2DX 
far superior in resolution to 
ET?

specimen damage

dose

AVERAGING!



✤ Something is symmetric when it is invariant (i.e., 
does not change) under some transformation

✤ For material objects, there is a myriad of 
possibilities: a cylinder is symmetric under arbitrary 
rotations about its axis, a sphere under any 
rotation, etc. 

✤ There are continuous symmetries, and discrete, 
such as in polyhedra, a crystal, helical object, etc.

✤ A symmetry group is the set of all symmetry 
operations applicable to an object

Definition of symmetry?



C6 C9 - PspA

Cyclic symmetry Dihedral symmetry

D6 D7 - GroEL

Molecular Symmetry (applies to SPEM, and 2DX)

Tetrahedral (4) symmetry Octahedral (8) symmetry Icosahedral (20) symmetry

Insect Ferritin VirusHsp16.5



A crystal is an array of translationally repeating units

A 2D crystal is generated by translation of a unit cell along a 
linear combination of two fundamental, linearly independent 
vectors (a and b).

Courtesy of Michael Landsberg



Symmetry operations: Rotation

n-fold rotational symmetry dictates that rotation about a point by an 
angle of 360°/n generates an image indistinguishable from the original

S
360/2 = 180° 360/3 = 120°

360/4 = 90° 360/6 = 60°



Symmetry operations: Reflection

• aka mirror or bilateral symmetry

• Any two points perpendicular to and equidistant from the 
axis (in 3D, or a line in 2D) of reflection are identical

T



Symmetry operations: Glide reflection

Translation by ½ unit cell combined with a reflection about 
the axis of translation



‣ A crystallographic space group is the mathematical group 
of symmetry operations which apply to both the given unit 
cell and the crystal array

‣ There are 230 possible crystallographic space groups in 
3D (65 for proteins and chiral molecules)

‣ For 2D projection maps, there are 17 plane groups

‣ These are different (but correlate somewhat trivially) to 
the 17 2D space groups which describe all possible 2D 
crystal arrangements

Crystallographic Symmetry



15 of the 17 plane groups are primitive cells, the remaining 
2 are centered cells

– A primitive cell is a minimal region repeated by lattice translations 
(15/17) 

– A face-centered cell is larger than the alternative primitive cell, 
and has internal repetition

Primitive and centered cells



p1

F asymmetric unit 

p2 p3 p4 p6

2-fold rotation center 3-fold 4-fold 6-fold

mirror glide

pm p2mm p4mm p3m1 p31m

pm pg p2gg p2mg p4gm

cm c2mm

There are 17 plane groups



Plane groups and 2D space groups

Plane group Unit cell geometry 
(crystal system)

Highest order 
rotation

Point group Glide/screw 2d space group

p1 rhomboid (oblique) 1 1 N P1

p2 rhomboid (oblique) 2 2 N P2

pm rectangle 1 m N P12

pg rectangle 1 m Y P121

cm rectangle 1 m N C12

p2mm rectangle 2 2mm N P222

p2mg rectangle 2 2mm Y P2221

p2gg rectangle 2 2mm Y P22121

c2mm rectangle 2 2mm N C222

p4 square 4 4 N P4

p4mm square 4 4mm N P422

p4gm square 4 4mm Y P4212

p3 rhombus (hexagonal) 3 3 N P3

p3m1 rhombus (hexagonal) 3 3m N P321

p31m rhombus (hexagonal) 3 3m N P312

p6 rhombus (hexagonal) 6 6 N P6

p6mm rhombus (hexagonal) 6 6mm N P622



How can we take advantage of the symmetry?

In single particles, we average the parts that are 
equivalent due to the symmetry of the problem, 
which translates into a better signal to noise ratio.

In helical aggregates and crystals, the Fourier 
transform shows the symmetry of the problem, with 
enhanced features visible in the power spectra.

“DIFFRACTION”!!



What is the image of a 2D crystal according to linear image theory?

a) Representation of a 2D crystal.
b) Representation as the convolution of the object with 

the lattice.
c) The FT of a has points on a reciprocal lattice

,which is related to the image lattice. The position of 
the spots in the transform is determined by the image 
lattice. Whereas the Amplitude and phase values 
depends on the structure of the repeating motif in the 
image.

d) Miller indices (h,k) are used to refer to a particular 
lattice point in the transform 

… the image is the convolution of 3 factors:
1) molecular structure 
2) the lattice structure
3) the CTF

Image processing is about:
1) increase SNR form molecular structure 
2) correction of lattice disorder
3) correction for CTF modulation of 

diffracted waves.



Analysis of the Image into Fourier Components

Original
Image

Fourier
transform

Extraction
and correction of 

Fourier components

Fourier
synthesis

Aim: To obtain reliable measures of the 
amplitude and phase of the frequency 

components.  



• Each diffraction spot 
represents a different 
(spatial) frequency

• The amplitude of each spot is 
unique to the structure of the 
object

• When a Fourier transform of 
a crystal image is calculated 
with a computer, one also 
gets the phase at each 
spatial frequency

Note: high radius
= high frequency
= high resolution

Fourier transforms of images of crystalline specimens 



The electron density  intensity             everywhere in a protein crystal, can be represented as a sum of cosines. 
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The Fourier transform plays a central role in understanding the 
analysis of diffraction data

This Fourier series illustrates the point in 1D: 
Each cosine must have its own amplitude  

, phase               and periodicity L.  
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Basics of image processing



Basics of image processing



Basics of image processing



Basics of image processing



Basics of image processing



The electron density  intensity             everywhere in a protein crystal, can be represented as a sum of 
cosines. 

€ 

ρ x( ) = F(n)cos −2π n
L
x +α(n)

& 
' 
( 

) 
* 
+ n= 0

N

∑

  

€ 

ρc

 
R ( )

The Fourier transform plays a central role in understanding the 
analysis of diffraction data

This Fourier series illustrates the point in 1D: 
Each cosine must have its own amplitude  

, phase               and periodicity L.  
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RESOLUTION, “d”, AND SPATIAL FREQUENCY, “s = 1/d”

ARE “THE SAME THING”

A “COMPLICATED”
STRUCTURE

LOW-RESOLUTION
FEATURES

HIGH-RESOLUTION
FEATURES

Chiu et al. (1993)
Biophys J. 64:

1610-1625

Resolution and spatial frequency



The electron density  intensity             everywhere in a protein crystal, can be represented as a sum of 
cosines. 
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is the structure factor
S is the 3D spatial frequency vector,

which replaces the discrete vector ghkl

Experimentally we need to measure                             by measuring 
amplitude and phase at each discrete spatial frequency

In other words, the electron density               is the (inverse) Fourier transform of the structure factor   
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The Fourier transform plays a central role in understanding the 
analysis of diffraction data



The Fourier transform of a crystal represents discrete, regular samples 
of the continuous Fourier transform of the molecule
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The electron density  function of a crystal,              can be described in terms of two separate functions     
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€ 

ρc

 
R ( )

  

€ 

ρc

 
R ( ) = ρu

 
R ( )⊗ L

 
R ( ) = ρu

 
$ R ( )∫ L
 
R −
 
$ R ( )d
 
$ R 

  

€ 

ρu

 
R ( )   

€ 

L
 
R ( )

  

€ 

ρu

 
R ( )

  

€ 

L
 
R ( )

is the electron density  function of the unit cell

is the lattice function that marks the position of every unit cell

Convolution of one unit cell with a 2-D lattice produces a 2-D crystal

This integral is difficult to solve in real space!!!



Convolution:

x
-a                                    0                                   a

c(x)

a

x

f1

f2

Convolution: the convolution of an integral expresses the amount of overlap of one function f2 as it is 
shifted by another function f1, is denoted               and defined over an infinite range as:
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But much easier to solve in Fourier or reciprocal space!!!

The Fourier transform of a crystal represents discrete, regular samples 
of the continuous Fourier transform of the molecule



is a sum of Dirac delta functions, one at every lattice point
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… and its FT is another sum of Dirac delta functions but this time in reciprocal space

is the reciprocal lattice of the  crystal lattice
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The Fourier transform of a crystal represents discrete, regular samples 
of the continuous Fourier transform of the molecule
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The points in the reciprocal lattice are determined by reciprocal lattice vectors a*, b* and c*, 
which are themselves determined by the crystal lattice (unit cell) vectors.
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b∗ =
c × a
a ⋅ b × c
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c∗ =
a × b
a ⋅ b × c

Then the vector to an arbitrary reciprocal lattice point in Fourier space can be written in 
terms of reciprocal lattice vectors a*, b* and c* and of Miller indices.

The Miller indices (hkl) provide a unique identification for every point in the reciprocal lattice. 
THUS they serve to identify every diffraction spot in a diffraction pattern

The Fourier transform of a crystal represents discrete, regular samples 
of the continuous Fourier transform of the molecule



In other words, the Fourier Transform of a crystal is ZERO everywhere except at the 
reciprocal lattice points ghkl , where it has the same value as the Fourier Transform of the unit 

cell F(S) would have at that spatial frequency (S). 
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The Fourier transform of a crystal represents discrete, regular samples 
of the continuous Fourier transform of the molecule



What is the image of a 2D crystal according to linear image theory?

a) Representation of a 2D crystal.
b) Representation as the convolution of the object with 

the lattice.
c) The FT of a has points on a reciprocal lattice

,which is related to the image lattice. The position of 
the spots in the transform is determined by the image 
lattice. Whereas the Amplitude and phase values 
depends on the structure of the repeating motif in the 
image.

d) Miller indices (h,k) are used to refer to a particular 
lattice point in the transform 

… the image is the convolution of 3 factors:
1) molecular structure 
2) the lattice structure
3) the CTF

Image processing is about:
1) increase SNR form molecular structure 
2) correction of lattice disorder
3) correction for CTF modulation of 

diffracted waves.



Analysis of the Image into Fourier Components

Original
Image

Fourier
transform

Extraction
and correction of 

Fourier components

Fourier
synthesis

Aim: To obtain reliable measures of the 
amplitude and phase of the frequency 

components.  



Amplitude and phases



Amplitude and phases



Imaging for phases and/or for amplitudes



Imaging for phases and/or for amplitudes



Diffraction amplitudes are better than image amplitudes
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The phases of the structure factors are lost
when diffraction intensities are recorded.
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We can collect diffraction data directly where the CTF modulation is minimal: Amplitudes are good but phases are lost



Image processing of 2D crystals at different stages

Courtesy of Richard Henderson

Result after averaging of unit cells 
by unbending in real space and 

filtering in reciprocal space

After merging of several images to 
increase SNR

CTF corrected but amplitudes can 
be improved 

After threefold crystallographic 
averaging and replacement of image 
amplitudes by diffraction amplitudes 

Area of digitized micrograph of a 
BR 2D crystal in which only 

electron noise is visible (plus hair)



Unbending

Anchi Cheng



correlations

Courtesy of Richard Henderson
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Merging

Stahlberg



Merging

Stahlberg



3D structure analysis requires views from multiple directions

Projection theorem: 
When a 3-D object is projected to 

produce a   2-D image, its 
Fourier transform is a 2-D slice 
(NOT a projection) of the 3-D 
transform of the oject

These 2-D slices always pass 
through the origin 

and thus are called”central 
sections”

When data from many different 
“central sections” are 
combined 

one builds up the full, 3-D Fourier 
transform



The reciprocal lattice of a 2D crystal consists of lattice lines



Accumulating merged images with tilts
“untilted

”
z*

z*=0 plane
z*z*

tilt axis

low tilt and various tilt axes



tilt axis

z*

high tilt and various tilt axeslow tilt

z* z*

Accumulating merged images with tilts



Interpolation along Lattice Lines

To apply the 3D FT-1, lattice lines have to be uniformly sampled.

Missing
cone

Missing
cone



Examples of Lattice Lines



Sampling of Fourier Space
after combination of all central sections


