Cryo Applications & Sub-tomogram Processing

SEMC Winter EM Course 2018

2-11-18

Alex Noble anoble@nysbc.org

National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center New York Structural Biology Center

Overview – Why CryoET?

Why cryo?

• Specimen preservation in native or near-native environments.

Why electrons?

- +Small wavelengths (high res), +Can be focused, –Damage sample
 Why tomography?
- Some combination of:

○Sample is unique; e.g. cells,

 Sample is too heterogeneous (structurally or morphologically);
 e.g. viruses with variable # of receptors, or viruses of different nonsymmetric shapes,

Domain-stoichiometry and/or orientation is required,

Sub-nanometer information is probably not required.

- CryoET limitations
- Tilt-series collection
- Tilt-series alignment
- Defocus estimation and CTF correction
- Sub-tomogram localization
- Sub-tomogram alignment and averaging
- Examples
- Processing limitations
- Future directions and improvements

Primary limitation: Specimen/Ice thickness

• At 300keV in a TEM (e.g. Krios), electrons cannot penetrate more than 0.5-1 μm

Primary limitation: Specimen/Ice thickness

• At 300keV in a TEM (e.g. Krios), electrons cannot penetrate more than 0.5-1 μm

Limitation: Camera fidelity at localizing electrons

• Cameras do not transfer information perfectly or equally across frequencies.

Limitation: Electron damage of the specimen

- High voltage electrons damage biological specimen.
 - High resolution information is lost first followed by lower resolution info.

Solution:

Remove damaged information from image frames

Limitation: Electron damage of the specimen

• Solution: Remove damaged information from image frames (single particle) or tilt images (tomography):

Tomography overview

ET/CryoET collection and processing overview

Reconstruction Implies Interpolation

- Tomographic reconstruction on a 3D grid requires interpolation
- Larger tilt increment = more missing information at higher tilt angles

Grid tilting increases thickness

grid tilted 60° = 2x thickness

Grid tilting thickness increase limits tilting

- Phase plate tilt-series of T20S Proteasome
- Tilt axis is horizontal

Grid tilting limit results in missing information

Noble, 2017

Phase plate tilt-series of T20S Proteasome Tilt axis is **vertical**

Tilt-series collection software

Leginon

SerialEM

TOM Toolbox

EPU

UCSF Tomography

Tilt-series tracking

- Problem: You cannot trust the goniometer to move where you tell it
- Problem: You cannot use the area of interest to refine your tracking because you will over-expose your sample
- **Problem:** You need to refine x, y, and usually z to within 10-100 nm for a high-mag tilt-series collection.
- Solution 1: Predictive tracking Use previous tilt images, previous tilt-series, and possibly known goniometer instabilities.
- Solution 2: Focus position method Identify one or two locations along the tilt axis the the software will go to to re-focus and re-track.

Automated tilt-series collection

Automated tilt-series collection is currently routine

- From an atlas, select multiple squares, and from each square select holes,
- For each hole place an exposure target along with one or more focus targets,
- Set up dose, defocus range, tilt model, etc. appropriately,

Collect!

Automated tilt-series collection

Focus on the tilt axis!

- You want to minimize the amount of tracking error
 - Tilting should not change the x,y,z target location
- This is called getting eucentric height.

Tilt-series alignment

- Software:
 - ETomo in IMOD Fiducial-based alignment (also patch tracking)
 - Markerauto and AuTom Automated **fiducial-based** alignment
 - Protomo Fiducial-less alignment
 - Alignator Patch tracking alignment, GPU-accelerated
- Must refine most or all of the following:
 - Tilt image shifts, rotations, and magnification changes (scaling)
 - Tilt axis location
 - Tilt angles

Fiducial-based tilt-series alignment

- Requires a sufficient number of wellbehaved gold beads
- Semi-automated (IMOD) or automated (markerauto, IMOD) processing

http://bio3d.colorado.edu

Fiducial-based tilt-series alignment issues

Fiducial Movement

Anisotropic Bead Motion

Bead Aggregation

DE-20 @ 18kx; 51°, 2.34 e⁻/Å² after a cumulative dose of 60 e⁻/Å² DE-20; 57.5 e⁻/Å², 0° exposure

Fiducial-based tilt-series alignment issues

Nearby Fiducials Affect Signal and Contrast

 Fiducial fringes change the power spectrum of your reconstructed object.

Fiducial-based tilt-series alignment issues

Fiducials are Present in Much of the Reconstruction, *Even if You Can't See Them!*

- Distant fiducials can be in the projection direction of your extracted object of interest.
- Erasing fiducials isn't perfect.

Patch tracking tilt-series alignment

Identify featureful objects with contrast in all tilt images and track them.

 Semi-automated (IMOD, Alignator)

Fiducial-less tilt-series alignment (Protomo)

Fiducial-less tilt-series alignment (Protomo)

Winkler & Taylor, JSB 2006

Protomo measures alignment errors for each

image

- Alignment is performed by matrix diagonalization,
- Residual off-diagonal are recorded as errors
 - Per image errors in translation, rotation, and scaling.

Appion-Protomo automated Protomo

- 1) Minimize all image transformation errors,
- 2) Stabilize tilt and sample geometry.

https://github.com/nysbc/appion-protomo

Goal: Find the **height of your objects** of interest to correct for microscope aberrations (CTF)

Problem: Low per-image SNR and potential poor tracking

Defocus estimation methods

Methods ordered approximately **worst-to-best** (depends on sample):

- **Per-image** defocus estimation accounting for tilts (CTFFIND4, GCTF, etc.)
- Per-tomogram post-hoc estimation by using SPT FSC to locate the first CTF zero
- Image tiling to estimate the defocus of the untilted plane (TomoCTF)
- Defocus estimation and interpolation using two focus locations on the tilt axis (Eibauer, 2012)
- Per-particle tilt image fine estimation and correction that accounts for the 3D location of each particle
- Per-particle tilt image fine estimation and correction that takes into account overlapping objects in each tilt image of each particle and accounts for the 3D location of each particle.

CTF correction methods

Methods ordered approximately **worst-to-best** (depends on sample):

- Per-image correction
- Strip-based correction with TomoCTF or IMOD ctfphaseflip
 - Flips phases and optionally corrects amplitudes (TomoCTF) on a strip-by-strip basis.
 - Error will depend on the amount of non-eucentricity
- 3D CTF model (Relion) takes into account x,y,z particle locations
- Per-particle/tiling CTF correction (EMAN2)
- During tomographic reconstruction (EmSART, NovaCTF)

• Missing wedge must be taken into account for each sub-tomogram

Sub-tomogram processing software

- Dynamo GPU accelerated, tomogram database, extensive picking abilities
- Relion 3D CTF model, Bayesian approach to alignment is used
- EMAN2 Sub-tilt-series refinement and defocus estimation
- PyTom
- PEET
- Jsubtomo
- TOM & AV3
- XMIPP

Sub-tomogram processing in Relior

- Uses normal Relion workflow.
- Potential issues:
 - Extra images are likely not at the same focus as the Target
 - 3D FSC may eliminate properly interpolated values due to sampling

Sub-tomogram processing in Relior

weighted CTF model Bharat et. al., Structure 2015

Sub-tomogram processing in Relion

Bharat et. al., Structure 2015

Sub-tomogram processing in Relion

• 6e-/A² pre-exposures prior to tilt-series

collected were collected and analyzed with

single particle

Sub-tomogram processing in EMAN2

Sub-tomogram processing in EMAN2

• Better than 2/3 Nyquist

Tomogram/sub-tomogram annotation and segmentation software

- Dynamo Annotate membranes, tubes, helices, crystal structures, vesicles, etc.
- EMAN2 Shallow learning neural network
- Amira Interactive segmentation and filtering suite
- UCSF Chimera w/ Segger Interactive segmentation
- Template picking

Sub-tomogram annotation processing in Dynamo

- Backbone, helical, and circumferential picking
- Helical symmetry

determination

Sub-tomogram annotation processing in Dynamo

Castaño-Díez et. al., JSB 2012 & 2016

Sub-tomogram annotation processing in Dynamo

Castaño-Díez et. al., JSB 2012 & 2016

Sub-tomogram segmentation processing in EMAN2

Sub-tomogram segmentation processing in EMAN2

HIV-1 trimer single particle

Priyamvada Acharya & Alex Noble

Example: Exotically Shaped Samples

Mykhailo Kopylov & Beth Stroupe

Example: Tomography for single particle initial model

- 5 tomograms were collected
- ~1,000 particles picked, aligned, and classified
- Classes used as templates for picking single particle micrographs
- Single particle now at 4 angstroms without anisotropy.

Example: Lassa virus glycoprotein spike

- Heterogeneous shape makes single particle difficult/impossible
- Sub-tomogram processing on spiked allows for 13.6 Å spike structure
- Can re-map spikes onto all particles in the tomogram

Example: HIV-1 Capsid-SP1 at 3.9/3.4 Å

- Krios + Super-res K2 + Gatan Energy Filter
- Fiducial tilt-series alignment
- 1.5 5 micron defocus
- Strip-based CTF correction
- ~750,000 sub-particles used
- TOM, AV3, Dynamo, and in-house scripts were used
- NovaCTF 3D CTF pushed it to 3.4 Å

Schur, 2016 Turoňová, 2017

Example: HIV-1 Capsid-SP1 at 3.9 Å

An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation Schur F.K.M, Obr M., Hagen W.J.H, Wan W., Jakobi A.J., Kirkpatrick J.M., Sachse C., Kräusslich H-G., Briggs J.A.G

Example: HIV-1 Capsid-SP1 at 3.9 Å

Sample		HIV-1 ΔMACANCSP2 VLPs	HIV-1 ΔMACANCSP2 VLPs + 100 μg/ml Bevirimat	Immature HIV-1 (D25A) virus	
Acquisition settings	Microscope	FEI Titan Krios	FEI Titan Krios	FEI Titan Krios 300 Gatan Quantum K2	
	Voltage (keV)	300	300		
	Detector	Gatan Quantum K2	Gatan Quantum K2		
	Energy-filter	Yes	Yes	Yes	
	Slit width (eV)	20	20	20	
	Super-resolution mode	Yes	Yes	Yes	
	Å/pixel	1.35	1.35	1.35	
	Defocus range (microns)	-1.5 to -4.5	-1.5 to -5.0	-1.5 to 5.0	
	Defocus step (microns)	0.25	0.25	0.25	
	Acquisition scheme	-60/60°, 3°, Serial EM	-60/60°, 3°, Serial EM	-60/60°, 3°, Serial EM	
	Total Dose (electrons/Å ²)	~90 - 270	~120 - 145	~120-221	
	Dose rate (electrons/Å ² /sec)	~3 - 8	~3 - 3.8	~1.5 – 5.5	
	Frame number	6 – 10	8 – 10	10 – 12	
	Tomogram number	93	43	74	
Processing settings	VLPs/Viruses	285	383	484	
	Asymmetric units Set A	265,506	386,040	301,302	
	Asymmetric units Set B	263,910	386,598	301,920	
	Final resolution (0.143 FSC) in Å	4.5	3.9	4.2	

Schur et. al., Science 2016

Nanometer SPT studies (~1 year old)

Sample	Sample type	Instrumentation	Tilt-series alignment method	Defocus range (µm)	CTF correction method	Number of asymmetric units	Reported resolution (Å), Nyquist fraction	Citation
HIV-1 capsid-SP1	VLP spikes	Titan Krios, K2 Summit @ 8kx8k, GIF	fiducial	1.5 – 5	Strip-based/3D CTF	~750,000	3.9, 0.35 3.4	(Schur et al., 2016) (Turoňová, 2017)
Rous-Sarcoma Virus Gag particles	Isolated viruses	Titan Krios, 2k CCD, GIF	fiducial	1.5 – 5	Strip-based	50,000	7.7, 0.27	(Schur et al., 2015)
Hepatitis B capsid	Isolated viruses	Titan Krios, K2 Summit, GIF	fiducial	3.2 – 5.6	Per-particle 3D CTF model	68,000	8.1, 0.53	(Bharat et al. <i>,</i> 2015)
M-PMV CANC Gag dimer	Lattice- decorated tubes	Titan Krios, 2k CCD, GIF	fiducial	1.5 – 3.3	Tile-based	121,000	8.3, 0.49	(Schur et al., 2013)
GroEL	Isolated particles	Titan Krios, 4k CCD	fiducial	2 – 3	Per-particle, each projection	10,000	8.4, 0.41	(Bartesaghi et al., 2012)*
HIV-1	Isolated viruses	Titan Krios, 2k CCD, GIF	fiducial	1.2 – 4	Strip-based	195,000	8.8, 0.46	(Schur et al., 2014)
Sec61 protein- conducting channel	Isolated vesicles	Titan Krios, K2 Summit, GIF	fiducial	3 – 4	Strip-based	17,600	9, 0.58	(Pfeffer et al., 2015)
M-PMV Gag-derived protein	Isolated viruses	Titan Krios, 2k CCD, GIF	fiducial	1.4 - 4.5	Strip-based	77,500	9.7, 0.41	(Schur et al., 2014)
HIV-1	Isolated viruses	Titan Krios, Falcon II	fiducial	2 – 5.5	Strip-based	63,000	10.9, 0.42	(Schur et al., 2014)
Histidine Kinase CheA	Latticed proteins	Tecnai Polara, 4k CCD	correlation	5 – 8	Strip-based	4,000	11.3, 0.53	(Cassidy et al. <i>,</i> 2015)
Mouse Serotonin Receptor	Isolated viruses	Titan Krios, K2 Summit	fiducial	2.5 – 4	Strip-based	65,000	12, 0.28	(Kudryashev et al., 2016)
VEEV	Isolated viruses	JEM3200FSC, DE-20, GIF	fiducial	4 – 8	Per-particle sub-tilt- series	21,000	13, 0.77	(Galaz-Montoya et al., 2016)

Processing/Resolution limits

Already discussed: Sample thickness, camera accuracy, and specimen damage

- Pixelsize (highest resolution = 2 x pixelsize = Nyquist)
- Isotropic motion (monitor your **drift** before full collection)
- Inherent specimen flexibility
- Ice warping in 3D during collection
- Beam-induced motion of objects of interest in 3D (particularly anisotropic)

Refining tilt-series alignment by tracking beads in 3D

SC

Fernandez, 2018

Refining tilt-series alignment by tracking beads in 3D

Refining tilt-series alignment by tracking just particles

Himes, 2017

Future hardware improvements in the field – 3D cryo-CLEM

Thank you! Questions?

Appion Tomography Workshop March 29

Alex Noble anoble@nysbc.org

National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center New York Structural Biology Center

