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How to get from here                 over here                                   to there



Electrons                                                                                  generated in cathode

3D object                                                                                  molecule embedded 
in vitreous ice              

2D projection                                                                           recorded on film or digital
camera

Imaging in the 
Transmission Electron Microscope

Transmission means that the signal is generated from electrons passing through the 
specimen.  We see a 2D projection = line integral over the 3D density along the beam.



How	to	get	from	2D	to	3D:	The	Projection	Theorem

“The	2D	Fourier	transform	of	the	
projection	of	a	3D	density	is	a	central	
section of	the	3D	Fourier	transform	of	the	
density,	perpendicular	to	the	direction	of	
projection.”

3)	It	is	necessary	to	collect	a	sufficient	
number	of	projections	over	a	large	
angular	range.		From	these	projections,
the	object’s	density	distribution	can	be
reconstructed.

1)	The	transmission	electron	microscope
forms	projections	of	the	3D	object.

2)	The	Projection	Theorem:



Aaron Klug and David DeRosier, 
Laboratory for Molecular Biology, MRC, 
Cambridge

First 3D reconstruction from EM images:
3D reconstruction of bacteriophage 
Tail using the Fourier-Bessel approach

1968



How	.	.	.	do	we	collect	the	projections?

Three	data	collection	strategies	for	3D	reconstruction:



Why	single-particle	data	collection	--
Why	not	electron	tomography?

RADIATION	DAMAGE	!

� Elastic	scattering			-- no	energy	transferred;	
no	radiation	damage;	useful	for	image	formation

� Inelastic	scattering	– leads	to	ionization,	bond	breaking,	formation	of	radicals

Why	low	temperature?

DOUBLE	PURPOSE:	

(1)to	present	molecules	in	close-to-native	environment	
in	high	vacuum	to	the	beam

(2)	to	trap	damaged	molecules	and	keep	radicals	from	migrating,	causing	
further	damage

Why ?



low       high 
resolution à

� The image is formed from elastically scattered electrons
�The lens gathers all rays scattered from a single point into an 

(imperfect) point in the image
� Large scattering angles – high resolution
� Small scattering angles – low resolution



Damage affects small features first, then larger features
Critical exposure Ne as a function of spatial frequency

Example: according to the curve, to get 4Å resolution, the exposure should be 
below 5 electrons/Å2 

Grant & Grigorieff, eLife 2015

Amplitude of crystal reflections 
affected by both damage to 
molecules and increasing disorder



Specimen	preparation
• Purified	sample	– standards	of	purity	have	changed	with	the	advent	of	

classification	(“computational	purification”).		In	some	experiments	it	is	
even	desirable	to		admit	molecules	in	different	conformational	and	
compositional	states.

• Apply	sample	to	EM	grid	as	a	thin	film	(~1000	Å)	suspended	over	holes.
• Carefully	controlled	blotting	is	a	critical	step	– control	blotting	force	and	

blotting	time
• Coverage	with	molecules	is	determined	by:	

(1)	sample	concentration
(2)	geometry	and	makeup	of	metal	grid		-- copper,	molybdenum,	gold

copper (traditional),	molybdenum (match	heat	expansion	of	
carbon),	gold (avoid	charge-induced	vibrations)



Plunge-freezer to prepare samples for cryo-EM
Manual                     automated, climatized



EM grid, Copper, 3 mm                         Carbon layer on EM grid

Home-made                   Quantifoil or C-flat

Specimen support

Qantifoil vs.  C-flat grids: different edges, different thickness, 
different geometry for meniscus   



Holes regularly arranged on a Quantifoil grid enable fully automated data acquisition
e.g. with LEGINON





EXAMPLE OF MENISCUS EFFECT: 
MOLECULES ACCUMULATE NEAR EDGE OF HOLE

Thick ice

Thin ice



Copper grid

Quantifoil

thin carbon (optional)
water à vitreous ice molecules



Russo and Passmore, Science 2014

GOLD GRIDS

John Russo and Lori Passmore
discovered that the carbon over 
the grid square oscillates like a 
drum, moving up and down.  
There is a sideways component, 
as well.

Gold grids reduce this effect 
50-fold.



Russo and Passmore, 
Science 2014

GOLD GRIDS VERSUS CARBON GRIDS: VIBRATION IN Z-DIRECTION



The	Single-Particle	Approach	to	Averaging	and
Reconstruction	in	EM	of	Macromolecules

“Single” =	unattached,	free	from	contacts	with	other	molecules.
This	affects	methodology	of	specimen	preparation,	electron	microscopy,	and	image	
processing.

Why	single	particles?
Advantages:	
•	native	conformation,	unaffected	by	crystal	packing
•	functionally	meaningful	states	can	be	visualized
•	no	part	of	the	molecule	needs	to	be	chopped	off	for	visualization
•	multiple	states	visualized	from	the	same	sample	
•	ideal	for	looking	at	the	dynamics	of	a	molecular	machine
Disadvantages	(up	to	2012):
•	large	computational	challenges
•	atomic	resolution	difficult	to	achieve	for	particles	lacking	symmetries



The	Single-Particle	Approach	to	Averaging	and
Reconstruction	in	EM	of	Macromolecules

“Single” =	unattached,	free	from	contacts	with	other	molecules.
This	affects	methodology	of	specimen	preparation,	electron	microscopy,	and	image	
processing.

Why	single	particles?
Advantages:	
•	native	conformation,	unaffected	by	crystal	packing
•	functionally	meaningful	states	can	be	visualized
•	no	part	of	the	molecule	needs	to	be	chopped	off	for	visualization
•	multiple	states	visualized	from	the	same	sample
•	ideal	for	looking	at	the	dynamics	of	a	molecular	machine
Disadvantages	(2012	onwards):
•	large	computational	challenges
•	atomic	resolution	is	as	yet	difficult	to	achieve	without	symmetries	 (DED	cameras)



Single-Particle Reconstruction
Main initial assumptions in signal processing:

1) All	particles	in	the	specimen	have	
(approx.)	identical	structure

2) All	are	linked	by	3D	rigid	body	
transformations	(rotations,	
translations)

3) Particle	images	are	interpreted	as	
a	“signal” part	(=	the	projection	of	
the	common	structure)	plus	
“noise”

Important	requirement:	
even	angular	coverage,	without	
major	gaps.



3D	reconstruction	requires	even	angular	coverage

good bad

“global coverage” “single-axis-like coverage”



Des Georges et al., book chapter, 2013

Angular coverage



Illustration of sample on grid:

After blotting, the grid is covered with thin layer of liquid containing molecules 

















Micrograph of eukaryotic ribosomes, recorded with 
direct electron detection camera



Determine orientations, 3D Reconstruction



Image classification



Single-Particle Methods 
are also used for ordered assemblies

Ordered	assemblies	never	strictly	follow	the	symmetries,	so	image	processing	
relying	entirely	on	the	exact	validity	of	the	symmetries	will	fail	to	retrieve	
the	high-resolution	information.		Applications	of	single	particle	methods:	

• Helical	order (e.g.,	acetylcholine	receptor,	actin-myosin	fiber)	– Ed	
Egelman’s		(and	Pawel	Penczek’s)	newer	methods.

• 2D	crystalline	order (e.g.,	purple	membrane	protein)	– “unbending”
approach	vs	“patch	averaging”method.

• Icosahedral	order (e.g.,	adenovirus)	– radical	departure	from	initial	MRC-
based	analytical	methods.

General	principle:	(1)	use	symmetry	to	roughly	locate	the			
repeats,	then	(2)	refine	position	by	using	the	cross-correlation	
function	(CCF)



Signal	and	noise	-- definition	of	SNR

• Signal		s(r) (predictable,	deterministic,	originating	from	the	object)
versus

• Noise		n(r)	(stochastic;	unrelated	to	the	signal;	aperiodic	[no	two	
realisations	are	the	same])

• Signal-to-noise	ratio	(SNR)	=	signal	variance/noise	variance

• Averaging	over	N	noisy	realizations	of	a	signal	increases	the	SNR	by	a	
factor	of	N

• Note	that	what	is	signal	and	what	is	noise	in	a	given	experiment	depends	
on	the	way	the	experiment	is	designed.		



“Shot Noise”
At the low exposure settings (e.g., 10 e/Å2), required to avoid radiation damage, 
the fluctuations of the electron distribution is a serious source of noise, called 
shot noise.  Low-exposure images typically have an SNR of 0.1 (signal variance 
is only one tenth of noise variance.

Only by averaging over a sufficient number of particle projections can the
original signal be retrieved.

Simulated images of ribosome at SNR ~ 0.1

Schwander et al., Phil. Trans. Roy. Soc. 2014



“Structural	Noise”

The matrix of ice, and carbon deposit (if used) has a unique structure which
is superimposed when a projection image is formed.  When images of particles
are averaged, the superimposed structure of the surrounding must be considered
“noise” since it is not reproducible from one particle to the next..



Two-dimensional	processing:		averaging	of	like	images	
to	eliminate	noise

Averaging	requires	the	images	to	be	aligned:	in	the	array,	each	image	
element,	or	pixel,	must	refer	to	the	same	point	of	the	object.		

Note:	averaging	in	2D	only	makes	sense	for	molecules	presenting	the	
exact	same	view



Averaging,	to	improve	the	SNR

Averaging	can	be	done	in	one	of	two	ways:
-- either	--

make	use	of	order	or	symmetries	to	locate	repeats	
– or	--

make	use	of	cross-correlation	search	to	locate	repeats

In	the	first	case,	Fourier	methods	can	be	used	instead	of	real-
space	averaging



2D	Fourier	transform

Projection	image	of	molecule
ordered	on	a	periodic	lattice.
Noise	is	intermixed. Fourier	transform	is	concentrated	in	spots

on	the	reciprocal	lattice.		Noise	is	separated.

Inverse	Fourier
transform

Noise-free	projection	image

Indices	define	position	on
reciprocal	grid
Fourier	transform	is	complex,
each	spot	described	by
an	amplitude and	a	phase	of
a	component	wave

1)	make	use	of	order	or	symmetries	to	
locate	repeats	



average                     variance map       standard deviation map

2)	make	use	of	cross-correlation	search	
to	locate	repeats.

40S ribosomal subunits of HeLa cells, negatively stained

Frank et al., Science 1981



Alignment	of	single-particle	projections	
(“particles”)	is	achieved	by	cross-correlation

• Translational	cross-correlation	function	(CCF)
Discrete,	unnormalized	version:

• Rotational	CCF	– the	same	summation	as	above,	but	this	time
one	image	is	rotated	with	respect	to	the	other



An image can be considered a superposition of sine waves of different 
spatial frequencies running in different directions.  Each sine wave is 
characterized by an amplitude and a phase.
Alternative representation (as in this diagram) employ complex exponential 
functions with complex coefficients.



An image f(m, n) is represented as a finite series of 2D exponentials 
with complex coefficients F(u,v).



The	discrete	Fourier	representation	implies	repetition	of	the	
image	on	an	infinite	lattice

.      .      .

.      .      .

.      .      .

.       .       .       .      .      .  

.       .       .        .      .      .                          .  .  .  



Notations:

Fourier	transform:		F(k)	=	F {f(r)}
Inverse	Fourier	transform:	f(r)	=	F-1 {F(k)}

r	=	(x,	y)
k =	(kx,	ky)	
“spatial	frequency”

Lower case

Upper case

Fourier operator



Parseval’s	Theorem	-- conservation	of	power,	or	
conservation	of	information	content

F(k)	=	F {i(r)}						
definition:		P(k)	=	|F(k)|2 is	the	“Power	spectrum”

Total	power	is	the	same	in	real	and	Fourier	space:
∫ø|F(k)|2	dk =	∫	|i(r)	– avrg|2 dr
where avrg	=	1/area	x ∫	i(r)dr
and	subscript	ø	indicates	“exclude	origin	in	the	integration”

Application:	Signal-to-Noise	ratio	can	be	computed	in	Fourier	
space:

SNR	=		∫ø|S(k)|2	dk/	∫ø|N(k)|2	dk



Point spread function and Contrast transfer function
In an optical instrument, the aperture limit, the aberrations of the lens and other 
imperfections have the effect that a single point in the object is imaged as an 
extended 2D function, the so-called Point Spread Function (PSF)

The Fourier transform of the PSF in EM is the Contrast Transfer Function (CTF).

In the Transmission EM, the CTF is given by an analytical expression:

defocus ax. astigmatism spherical aberration

where

k = spatial frequency vector;  k = length of this vector

wave aberration function





Point-Spread	Function	=
Response	of	the	optical	instrument	to	a	point	object

x

y

The point spread function has finite width, and is centered at the location 
that the point would have in the image formed by an ideal instrument.



Contrast	transfer	function

Envelope function due to
energy spread 
and angular spread
“partial coherence”

spatial frequency

1

0

-1



Effects	of	energy	spread	and	angular	spread

• Energy	spread:	voltage	changes	à wavelength	changes
• Defocus	spread:	defocus	changes	have	approx.	same	effect	as	

voltage	changes
Envelope	function	due	to	energy	spread/defocus	spread	is			

independent	of	defocus

• Angular	spread:	point	source	replaced	by	extended	source	–
convergent	(non-parallel)	illumination
Envelope	function	is	defocus-dependent

CTF(k) = CTFideal(k) x Eenergy spread(k) x E angular spread (k)



Defocus	(and	hence	the	CTF)	is	affected	by	the
particle’s	z-position	within	the	ice	layer.

Ideally,	defocus	should	be	measured	for	each	particle	separately,
but	the	signal	is	often	not	strong	enough.

dΔz

Ice layer large compared with particle diameter



Contrast transfer function

Coherent

Partially
coherent

Power spectrum
“Thon rings”

after Fritz Thon, a pioneer
in optical diffraction analysis



What Thon rings show: 

1) how far the information transmitted ranges in Fourier space
2) whether the lens is astigmatic (CTF depends on angle in the plane)

Why do we see rings?  Because for an amorphous object, such as carbon,
the amplitudes of Fourier components are roughly the same throughout Fourier
space.  Without CTF, we would see a uniform (white) disk up to the radius that 
corresponds to the resolution limit.
Instead we see concentric white rings separated by black lines (zero transitions).



¢ =

An object consisting of points, convoluted with the point spread function of the optical
instrument, results in an image in which each point is replaced by the PSF..

OBJECT                                        PSF             IMAGE =  CONVOLUTION
PRODUCT 

Convolution	theorem

“Con-
voluted 
with”



Convolution	Theorem

o(r)	=	“2D	object” or	“2D	projection	of	a	3D	object”
s(r)	=	“signal	resulting	from	EM	imaging”
h(r)	=	“point-spread	function”

s(r)	=	o(r)	○ h(r)	=	“convolution	product	of	o(r)	with	h(r)”

stands	for	

Special	case:	o(r)	○ δ(r)	=	s(r)						convolution	with	a	delta	function	is	an	identity	operation

Convolution	Theorem	says:	S(k)	=	F{s(r)}	=	O(k)H(k),	where	S(k)	=	F{o(r)},	O(k)	=	F{o(r)},	

and	H(k)	=	F{h(r)}

ò

òò

-=

--=

')'()'()(

'')','()','()(

rrrrr dhos

or

dydxyyxxhyxoxs

○ Convolution 

☼ Correlation

x    Scalar product



Correlation	Theorem

s(r)	=	“image	signal” – two	noisy	versions:	s1(r)	=	s(r) +n1(r)	and	s2(r)	=	s(r)	+	n2(r)

CCF(r)	=	s1(r)	☼ s2(r)	=	“correlation	function	of	s1(r)	with	s2(r)”

stands	for	

Special	case:	s(r)	☼ s(r)			autocorrelation	function

Correlation	Theorem	says:	Φ(k)	=	F{CCF(r)}	=	S1(k)S2*(k),	

where	S1(k)	=	F{s1(r)},	S2(k)	=	F{s2 (r)}

CCF(x, y) = s1(x ', y ')s2 (x + x ', y+ y '∫∫ )dx 'dy '

or

CCF(r ) = s(r ')s(r + r ')dr '∫ + noise_ term

○ Convolution 

☼ Correlation

x    Scalar product



Padding	is	needed	when	CCF	is	computed		via	Fourier	methods:



Need	for	padding	follows	from	
the	discrete	Fourier	representation:

Nonpadded image would get superimposed on a copy of itself



Translational	alignment	using	the	CCF	–
a	practical	example

CCF                      shift of peak from origin           one of the images,
indicates relative shift of images            padded

The peak indicates postion of perfect alignment of two images of the same molecule 



Example	for	solving	a	problem	using	both	convolution	and	
correlation	Fourier	theorems:	

CCF	of	two	EM	images	of	an	object	with	different	CTFs:

CCF	of	two	images	s1 (r),	s2 (r)	of	the	same	object	signal	o(r)	with	
different	CTFs,	H1(k)	and	H2(k)	

(using	correlation and	convolution	theorems).
s1(r)	= o(r)○ h1(r);		s2 =	o(r+Δr)	○ h2(r)	
CCF(r)	=	s1(r)	☼ s2(r)	

S1(k)	x	S2*(k)	=	O(k)	x	H1 (k)]	x	{O(k)	x	exp[2πikΔr]	x	H2(k)}*
=	O(k)	x	O*(k)	x	exp[-2πikΔr]	x	H1(k)	x	H2*(k)

Now	back	in	real	space:
CCF(r)	=	[o(r)	☼ o(r)	]									○ [h1 (r)	☼ h2 (r)] ○ δ(r-Δr)

○ Convolution 

☼ Correlation

x    Scalar product

auto-correlation function of signal   CCF	of	point	spread	functions		shifted	by	Δr	



Value of normalized CCF peak as a function 
of the difference in focus, δΔz

(Scherzer) normalized defocus =1                 normalized defocus = 10

Normalized defocus = Normalized defocus = 



Tools: CCFs	of	micrographs	of	the	same	
specimen,	as	a	function	of	δΔz

To get sharpest CCF peak (yielding highest alignment accuracy), both images 
to be aligned should have the same defocus



The	cross-correlation	function	has	a	peak
standing	out	from	a	noisy	background

PEAK
NOISE

The SNR in the CCF determines whether we will be successful in
finding the correct peak and its x,y coordinates.  What factors affect 
the size of the SNR?



Criterion	for	detection	of	CCF	peak:	
feasibility	of	alignment

Because	of	the	low	signal-to-noise	ratio	in	the	images,	there	exists	a	critical	
threshold	for	the	feasibility	of	alignment	of	two	raw	images	of	a	molecule.

The	critical	parameters	are:

pcrit -- maximum	exposure	[electrons/unit	area]	the	molecule	can	tolerate
D -- particle	size
c – contrast
d – resolution	(in	real	space)

Particle	size	D	should	satisfy
2

3

crit

D
c dp

³

Saxton and Frank (Ultramicroscopy 1977) 

also see Henderson (Quart. Rev. Biophys. 1995): number of molecules of a given 
size required to reach 3A resolution, based on scattering data for electrons, X-rays, 
and neutrons. 



2D	alignment	strategies:

reference-based
versus reference-free

A	variant	of	the	reference-based	method	updates	the	reference	as	it	goes	
along,	and	becomes	thus	less	dependent	on	the	initial	choice	of	reference.



Multi-Step Reference-Based Alignment



How	to	combine	translational	and	rotational	alignment:	use	of	invariants,	
such	as	the	autocorrelation	function



Properties	of	the	Autocorrelation	Function

• The	autocorrelation	function	of	an	image	preserves	directional	features	of	
the	image	

• For	instance,	correlations,	within	the	same	image,	between	distinct	
maxima	separated	by	a	vector

• The	ACF	is	centro-symmetric
• Example:	an	image	consisting	of	three	dots:

IMAGE               AUTOCORRELATION FUNCTION

origin



The molecule in arbitrary 
positions

ACFs of molecules above

Noise-free molecule and
its ACF



ACF	– based	alignment	method



Variance	map

• The	variance	map	is	a	“byproduct” of	the	averaging.		It	can	be	used	to	find	
the	regions	where	the	images,	on	average,	differ	maximally.

• It	is	also	the	yardstick	that	helps	determine	whether	or	not	a	density	in	a	
difference	map	is	significant.

2
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1( ) [ ( ) ( )]
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particle image      average image
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average                                  variance map s.d. map



Alignment	of	frames	in	movie	mode	of	Direct	
Electron	Detection	cameras

Most DED cameras allow
data to be collected in multiple
frames.  This makes it possible
to correct for drift, even on
the level of single particles.



S. Scheres, eLife 2014(vectors of motion are exaggerated)



Peaks are distinguishable            Peaks are just resolved             Peaks blend into a                              
single one

when distance is > drayleigh                  when distance is = drayleigh when distance < drayleigh 

Point Spread Function

Sum Curve

Resolution criterion:  Images of two points, as function of their separation

E. V. Orlova and H. R. Saibil, in Chemical Reviews 2011



Resolution	definition,	determination	in	
Fourier	space

• Resolution	is	a	reciprocal	quantity,	measured	in	Fourier	space
• Defined	as	the	spatial	frequency	[1/Å]	up	to	which	information	is	

reproducible,	by	some	measure	of	reproducibility
• Decomposition	of	information,	by	Fourier	rings
• Randomly	picked	halfsets	(e.g.,	odd- vs.	even-numbered	images)
• Compare	averages	[reconstructions]	from	halfsets	over	rings	(shells)	in	

Fourier	space

F1 (k)                                                            F2 (k)

k, Δk

k ring radius 
Δk ring width



Resolution	measures	&	criteria:
Fourier	ring/shell	correlation

k = spatial frequency vector
k = |k| abs. size of spatial frequency
Δk = ring width or (in 3D) shell thickness
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F1(k), F2(k)  Fourier	transforms	of	halfset averages	
(or	halfset reconstructions)



Conservative;	SNR	=1

following	
“gold	standard”
protocol

0.5

0.143



Multivariate	Data	Analysis
and	Classification

• Images	often	need	to	be	sorted	into	classes
• Heterogeneity	is	due	to	(1)	different	viewing	angle	and	(2)	different	

conformations	of	the	molecules
• Sorting	them	visually	only	works	in	the	simplest	cases
• Multivariate	analysis	reduces	the	dimensionality	of	the	classification	

problem

Classification	in	2D
RATIONALE:

Inventory	of	existing	views



Liao et al., Nature 2013



An	image	represented	in	a	high-dimensional	
Euclidean	space.

• An	image	represented	by	an	array	of	N	x	M	pixels	can	be	thought	as	a	
vector	in	a	(generalized)	Euclidean	space	with	N	x	M	dimensions

• For	example,	an	image	of	64	x	64	pixels	is	a	vector	in	a	4096-dimensional	
space

• If	two	images	are	“similar” it	means	the	distance	between	the	vectors	
representing	them	is	small.		That	is,	the	vector	end	points	lie	close	
together

• Groups	of	similar	images	form	clusters	in	the	generalized	Euclidean	space
• To	show	the	concept,	and	introduce	an	important	tool	for	classification,	I	

will	use	a	simplistic	image	containing	only	two	pixels



density of
pixel #1

density of pixel #2

Introducing: a set of images, each consisting of 2 pixels

Similarity	=	closeness	in	2-D	Euclidean	space
Two	images	are	similar	if	their	(generalized)	Euclidean
distance	is	small



density	of	pixel	#1

density	of	pixel	#2

Projection	onto	axis	1

A	set	of	images	consisting	of	two	pixels:	Intro	into	classification

Fortuitous case: 
direction of grouping  
happens to coincide
with a primary axis.



density	of	pixel	#1

density	of	pixel	#2

Projection	onto	axis	1

General case:
grouping is in a direction
that does not coincide
with a primary axis.



density	of	pixel	#1

density	of	pixel	#2

Projection	onto	axis	1

New	axis	required	for	showing
clustering!
(linear	combination	of

axes	1	and	2)



Tools: Classification, and the Role of MDA

• Classification deals with “objects” in the space in which they are represented.
• For instance, a 64x64 image is an “object” in a 4096-dimensional space since, in 

principle, each of its pixels can vary independently.  
Let’s say we have 8000 such images. They would form a cloud with 8000 points in 
this space.   This is an unwieldy problem.

• Unsupervised classification is a method that is designed to find clusters (regions of 
cohesiveness) in such a point cloud.

• Role of Multivariate Data Analysis (MDA): find a space (“factor space”) with 
reduced dimensionality for the representation of the “objects”.  This greatly 
simplifies classification.

• Reasons for the fact that the space of representation can be much smaller than the 
original space: resolution limitation (neighborhoods behave the same), and lateral 
correlations due to the physical origin of the variations (e.g., movement of a 
structural component is represented by correlated additions and subtractions at the 
leading and trailing boundaries of the component).

•



Principle of MDA:
Find new coordinate system, tailored to the data

X=	matrix	containing	N	
image	vectors	(each	with
J	elements)	as	rows

x

Pi

p.	151	[note	
error	in	book	
figure!]
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Brétaudière JP and Frank J (1986) J. Microsc. 144, 1-14

32	x	32	phantom	images	in	8	(=	23)		varieties



p.	163Tools



eigenvalue	histogram

3	stand	out,
i.e.,	3	factors	are	
sufficient.!

p.	167



Data	are	clustered	in	the	eight	corners
of	a	3D	factor	space	formed	by	the	first
three	factors.

1	vs	2

1	vs	3

2	vs	3

p.	168



MDA: eigenimages

+															- rec	+								rec	-

• Factor	1

• Factor	2

• Factor	3

p.	175



+															- rec	+								rec	-

• Factor	1

• Factor	2

• Factor	3

p.	175

Example	Factor	2:	position	of	eyes.			Average	contains	centered	oval	
(from	superposition	of	all	images	containing	eyes	shifted	to	right	with	
those	having	eyes	shifted	to	the	left).

To	express	the	eye-related	features	of	the	images,	the	eigenimage	must	
either	subtract	density	on	the	left	and	add	it	on	the	right,	or	vice-versa.



Class	Averages

Instances

Total	Avrg	+	F1

Total	Avrg	+	F1+F2

Total	Avrg	+	F1+F2+F3

+						-

p.	159

p.	176

p.	175

Stepwise	reconstitution
of	an	image



3D	reconstruction	-- preliminaries
• Under	what	conditions	are	projections	of	an	object	similar	to	

one	another?
• Similarity	ßà closeness	in	high-dim	E-space

ßà belonging	to	the	same	cluster
ßà high	correlation



Shape	Transform
• The	Shape	Transform	is the	Fourier	transform	of	a	binary	mask	

function	(1	inside,	0	outside)	whose	shape	is	the	shape	of	an	
object	in	2D	or	3D

• It	indicates	the	size	and	shape	of	the	local	region	in	Fourier	
space	within	which	Fourier	coefficients	are	
correlated/dependent.

Shape

Shape Transform



Shape Transforms



P1, P2  central sections in Fourier space.
Δθ  angle subtended by P1, P2
D  particle diameter

Similarity of projections, condition for 3D reconstruction, 
and “kissing” shape transforms

Shape transform

Critical radius R
determines resolution



Determination	of	Particle	Orientations

(A)	unknown	structure	-- bootstrap
(1)	Random-conical	(uses	unsupervised	

classification)
(2)	Common	lines/	angular	reconstitution	

(uses	unsupervised	classification)

(B)	known	structure	– low-res	map	available
(1)	reference-based	(3D	projection	matching	

=	a	form	of	supervised	classification)
(2)	common	lines/	angular	reconstitution

?

?

?

?

? ?



0-degree view

RANDOM CONICAL RECONSTRUCTION



50-degree view



Equivalent geometry
in the coo system of the particle



Conical	Data	Collection	Geometry	in	Fourier	
Space

Lanzavecchia et al.                    



Common line C-C’ of two projections represented by 
central sections P1 and P2

P1

P2

C

C’

COMMON LINES APPROACH TO DETERMINING ORIENTATION



Two 2D projections of the same 3D object have in common:

in Fourier space:  Fourier coefficients along the 
line of intersection: “common line”

in real space:  1D projections in particular directions

The Sinogram (or Radon transform) of an image is an 
exhaustive ordered display of all of its1-D projections

Comparing two sinograms, one can find the angles for 
which maximum agreement is reached



2D Projection #1

3D Structure

J. Frank, in Molecular Machines in Biology 2011



J. Frank, in Molecular Machines in Biology 2011

Determination	of	orientation	by	projection	matching



Initial	Angular	Grid

83 directions
~15 degrees separation



83-projection grid                       averages of particles classified



J. Frank, in Molecular Machines in Biology 2011

Iterative	Angular	Refinement



Angular	Refinement

Given	an	initial	3D	reference,

Iterate	the	steps	{3D	projection	matching	+	reconstruction}
Decrease	angular	grid	size	as	you	go	on	(range:	15°è 0.5°)

Convergence	criteria:		
(1)	convergence	of	particle	angles
(2)	convergence	of	resolution	(monitor	progress	with	FSC)

“Rule	of	neighborhood” saves	computing	time



• questions



• Start	with	coarse	grid	(15	degrees)
• Decrease	angular	separation,	down	to	0.5	degrees
• At	some	point,	switch	from	global	coverage	to	local	coverage	

of	previously	determined	angles

Increasingly finer angular increments



FSC  following progress of refinement



3D	Unsupervised	Classification

Statistical model:
each image is a projection of one 
of K underlying 3D objects, k.

with addition of 
white Gaussian noise

Unknowns: class numbers k, rotations, translations

k=1 k=3k=2



white noise = 
independence between pixels!

j

P(data image|model image) ~

P P(Xj|Aj)

Statistical	model:	the	probability	that	Xj is	observed	at	pixel	j,	
given	the	data	model	Aj	,	has	Gaussian	distribution	centered	on	Aj	

,	with	halfwidth	σ

m
od

el
da

ta

Aj Xj

s

For each pixel j:

( )(Xj – Aj)2

-2s2P(Xj|Aj)~ exp



Likelihood

• Find	a	model	Q that	optimizes	the	log-likelihood	of	
observing	the	entire	dataset:

( ) ( ) ( )å ååå
= =

QQ=Q
N

i

K

k rot trans
i transrotkPtransrotkimagePL

1 1

|,,,,,|ln

integrate over all unknowns!

Optimization algorithm: Expectation Maximization

The model Q comprises: estimates for 3D objects, s, …

class



Pre-translocational states of wt 70S E. coli ribosome 

Agirrezabala et al., PNAS 2012

no A-site tRNA
ML3D



QUESTIONS?



Generalized	Euclidean	distance
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const.                 const.                                        cross-correlation

Similarity = closeness in high-dimensional Euclidean space = small E-distance
à large value of CCF peak at matching position

Euclidean distance between two images f1 and f2:



It’s	easily	verified	that	the	Fourier	transform	of	any	real-valued	
image		has	the	following	property:

F(kx,ky)	=	F*(-kx,-ky)									(Friedel’s	Law)



Examples	for	Fourier	transforms	of	simple	
functions:











Units	of	spatial	frequency	in	2D	Fourier	space

0
1/6           1/3  Å-1 = 0.5/d

0.25           0.5   Nyquist

Spatial frequency is either in Nyquist units (0… 0.5) or in physical units 0.5/d 
relating to the sampling step d.  In above example, sampling step is  d = 1.5 Å

+ky

+kx







Generalized	Euclidean	distance
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const.                 const.                                        cross-correlation

Similarity = closeness in high-dimensional Euclidean space = small E-distance
à large value of CCF peak at matching position

Euclidean distance between two images f1 and f2:


