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The investigation concerns the possibility of extending to non-periodic objects the low exposure averaging techniques 
recently proposed for non-destructive electron microscopy of periodic biological objects. Two methods are discussed which 
are based on cross-correlation and are in principle suited for solving this problem. 

1. Introduction 

Recent work on low exposure techniques combined 
with averaging [ 1 -3 ]  (called 'SNAP shot techniques' 
in [3]) shows that information can be retrieved from 
periodic biological objects at higher than conventio- 
nally available resolutions [4]. Unwin and Henderson 
[2] were able to achieve 7 N image resolution, by re- 
ducing the exposure to less than 1 electron/A 2. Al- 
though a number of  interesting biological materials 
exist in the native state as (or can be induced to form) 
periodic arrays suitable for study by electron micros- 
copy, many others exist only as isolated units or in 
the form of disordered aggregates. We will investigate 
how the averaging techniques could be extended to 
this general case. Of all the possible irregular speci- 
mens which are being investigated in biological high 
resolution microscOpy, we are interested in those 
which form identical particles, sufficiently well sepa- 
rated on the microscope grid so as not to overlap. In 
order to avoid any three-dimensional complications, 
we will assume that these particles are flat, with pre- 
ferential attachment occurring on one side so that all 
projections in the direction of  the axial electron beam 
are identical. 

We note that averaging has been applied to dark 
field images of  molecules labelled with heavy atoms 
and lying isolated on a carbon film, for removing the 
noise due to the structure of  the supporting film [5, 
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6]. In these applications, the contrast of  the individual 
marker atom image to be superposed is sufficient for 
straightforward alignment. However, the requirement 
of  subminimum exposure poses a new problem: the 
alignment of  features that are only faintly visible on a 
noisy background. 

2. Averaging of  a motif  repeated on an irregular lattice 

2.1. Formulation o f  the problem 

In order to consider this problem, we first assume 
an arrangement of  repeats of  a motif  (e.g. a virus par- 
ticle) where each repeat has the same orientation but 
appears at irregular positions rj. Such an arrangement 
can be denoted in convolution form: 

i(r) = m(r) o g(r) + n(r) , (1) 

with the irregular point structure g(r)= z N 1 8 ( r - r j ) ,  
and an additive uncorrelated noise term. (For the lim- 
its of  additive formulation, see ref. [7].) 

The idea of  SNAP techniques is that a large num- 
ber of  noisy repeats of  re(r) are averaged to form a 
noise-free representation of  the motif. We immediately 
see the unique position of  the periodic arrangement in 
that it forces a common orientation on all repeats, and 
that it makes them appear on a regular lattice, leaving 
alignment as a trivial problem. So trivial, indeed, that 
it does not even surface in the usual Fourier treatment 
[8,9] unless data from different experiments have to 
be combined, in which case a phase factor must be at- 
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tached to the Fourier transforms. 
In contrast, we have here to consider the position 

vectors rj in (1) as unknowns which must be deter- 
mined from the image. 

2. 2. Matched filtering 

The general problem of accurate alignment o f  un- 
periodic patterns can be solved by cross-correlation 
techniques [7,10]; however, the present problem re- 
quires a special treatment. 

By applying the idea of  matched filtering [11 ], one 
could proceed to determine the lattice as follows. From 
theoretical considerations or some experimental evi- 
dence the most probable motif  structure mo(r ) ('pro- 

Fig. 1 a. Simple structure consisting of three repeats of a tri- 
angular motif. Underlying point structure marked by arrows. 

Fig. lb. Patterson function of the structure in a. 

A ± 

Fig. It. Tile structure a is placed on each point of the Patter- 
son function of its point lattice (endpoints of arrows in b). 
The number of overlaps in each position is schematically in- 
dicated. The "reconstruction" is formed at the centre of the 
Patterson function, in this case by superposition of three re- 
peats. 

totype ')  may be known. Cross-correlation of  m0(r ) 
with the experimental image (1) gives 

N 

m0(r ) @ i(r) = [m0(r ) @ m(r)] o ~ 5 ( r -  r]), (2) 
i'=1 

i.e. the cross-correlation function of  the prototype 
with the motif  m 0 @ m appears in each position r/'. 
Ideally, if the prototype happened to be identical 
with the motif  sought, this cross-correlation function 
would show a sharp peak, of  halfwidth corresponding 
to the image resolution, indicating the position o f  the 
origin of  re(r) with respect to the position o f  each re- 
peat of  the motif  with precision. 

In practice, of  course, any degree of  knowledge 
about the motif  structure is possible - from com- 
plete certainty to total ignorance. Generally, devia- 
tions of  the motif  from the prototype affect the cor- 
relation peak in two ways: first, the peak is reduced in 
height and second, it is blurred out since deviations 
occur most likely in the high resolution range. For 
unfortunate choices o f  the prototype pattern, the 
correlation peak may in fact be so broad and insignifi- 
cant that the locations of  the repeats cannot be es- 
tablished. To give an extreme example, it will not be 
of  much help to know that the motif  is circular with 
approximate radius R, because the auto-correlation 
between two circular discs of  that radius is a function 
whose halfwidth is in the order of  2R. 

Once the lattice is established, the noisy image is 
superposed N-times on itself, shifted by r/', and the 
average is computed. The average of the repeats is 
an enhanced version of  the motif  structure, whereas 
the average of  the noise portion levels out to a con- 
stant background term i f N  is sufficiently large. To be 
accurate, the condition for incoherent noise superpo- 
sition is that the lengths of the lattice vectors r/' and 
all possible difference vectors r/' - r k are larger than 
the auto-correlation radius of  the noise function. 

2.3. Auto-correlation superposition 

The other approach follows from the idea that the 
repeats present in (1) can act as their own prototypes. 
In the simple case where the signal-to-noise ratio is 
sufficiently large, the repeats of  the motif  can be ap- 
proximately located in the image by eye. An image 
area containing a single repeat is then selected and 
cross-correlated against the whole image. The result is 
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essentially the same as in (2): the autocorrelation 
function appears superposed on all lattice positions 
and its peak thus marks the lattice. 

We now assume the more complicated case where, 
due to low signal-to-noise ratio, the repeats cannot be 
clearly distinguished from the noise background. 

By auto-correlating the image one obtains 

i(r) ® i(r) = Ira(r)® m(r)] o [g(r) ®g(r)] 

+ ,7(r) ® n(r).  (3) 

Here the cross-terms between noise and signal are 
omitted because of  the assumption of  uncorrelated 
noise made at the beginning. Apart from the noise auto- 
correlation n ® t7 appearing in the centre, this is a con- 
volution product of  the auto-correlation function of 
the motif  with that of  the irregular lattice g(r) .  Fol- 
lowing the practice of  X-ray structure analysis, we call 
the auto-correlation function of the point structure 
'Patterson function' [12]. We have here the complica- 
tion that m® m appears repeated on the Patterson 
function of the lattice rather than on the lattice itself. 
This function contains points at each possible differ- 
ence position r/k = r~ - r k (cf. fig. la, b). For an ir- 
regular lattice, the number of  these points is 
N ( N  - 1) + 1 if one counts the multiple zero differ- 
ence vector]  = k only once and observes that each 
non-zero difference vector appears twice, with oppo- 
site directions. The proposal is now that the image 
should be superposed N ( N  - 1) + 1 times on itself, 
shifted by the Patterson vectors found in (3). 

The resulting pattern (fig. lc) will contain single 
overlaps lying on one half of  the Patterson function, 
and a number of repeats without overlap at the peri- 
phery. However, most interesting for our purpose is 
the fact that exactly N overlaps occur at the origin of  
the Patterson function, with each position of the ir- 
regular lattice contributing only once, so that here 
the desired average version of  the motif  is built up. 
Another way of  looking at this result is the following: 
since the Patterson function of  the lattice contains 
the lattice itself, shifting by all of its vectors assures 
that all lattice points come to an overlap at one point. 
Apart from the 'signal' position, our reconstruction 
contains a noise portion fl'om N ( N  - 2) + 1 unsuccess- 
ful overlaps which tends to be levelled out for large N. 

One difficulty has to be mentioned here*: with an 

increasing number of  repeats, the number of difference 
vectors in the irregular point structure increases, and 
so does'the number of  Patterson vectors. As a result, 
the auto-correlation discs which according to (3) are 
centred on the end points of these vectors will with 
increasing probability come to a partial overlap, thus 
obscuring the Patterson function sought and preventing 
accurate superposition. One can show by simple geo- 
metrical considerations that overlap will be unlikely if 
the extension of the selected field is large compared 
to that of  a single particle. 

This second approach therefore seems to solve the 
problem of averaging over N noisy occurrences of  a 
motif on an irregular lattice in a general way, although 
the assumption of  equal orientation made at the be- 
ginning is a most unsatisfactory restriction. Neverthe- 
less, we may have situations where biological structures 
appear in irregular intervals in a background matrix 
with preferred orientation, or where a crystalline sup- 
porting film favours a distinct orientation of  the sup- 
port particles. 

2.4. The  case o f  arbitrary relative orientat ion 

Following is an outline for a strategy that may be 
successful in the case of  arbitrary relative orientation. 
The approximate location of  the repeats can be found 
either by inspection or by application of  matched 
filtering with a circularly symmetric prototype func- 
tion that has the expected radius and radial distribu- 
tion of  the motif. One repeat so located is then rota- 
tionally correlated with each of  the others. Since the 
exact position of  the origins is unknown at this stage, 
rotational correlation has to be done by using transla- 
tion-invariant methods [ 10,13]. Once the relative 
orientations of  the N - 1 repeats is found with respect 
to the reference repeat, these can be rotated so that an 
image with oriented repeats is produced, which can 
then be treated by the methods outlined above. 

3. Conclusion 

As in the case of  periodic objects, averaging can be 
used to build up a high resolution image from noise- 

* I would like to thank Prof. W. Hoppe for drawing my at- 
tention to this point. 



162 Z Frank / Low exposure electron micrographs o1"non-periodic ob/ects 

contaminated repeats of  a structure lying in random 
positions but common orientation. Non-destructive 
electron microscopy which has recently proved suc- 
cessful in the determination of  an ordered membrane 
structure [2] can therefore in principle be extended 
to biological material in disordered form. The main 
complication introduced by the random positions is 
that they are not revealed by Fourier transformation, 
but have to be determined prior to the averaging 
procedure. Two methods have been discussed in this 
context: matched filtering and a new method, called 
auto-correlation superposition. 

While matched filtering requires a certain amount 
of  a-priori knowledge about the structure to be located, 
the other method makes no such assumption, and en- 
tirely relies on the correlation between any pair of re- 
peats. 

The question of noise sensitivity which has not been 
answered here makes a detailed theoretical investiga- 
tion of the effects of  size, shape, resolution, signal-to- 
noise ratio and nature of  the noise on the position- 
finding algorithms necessary. This will be done in a 
later study. It is already obvious, however, that the ex- 
posure reduction that can be achieved in the case of  
non-periodic specimens is limited by the requirement 
of some high-resolution similarity between any pair of  
repeats which is necessary for accurate positioning, 
whereas no similar limitation seems to exist for peri- 
odic specimens. 

As a concluding note to interested biologists, it would 
be desirable to know at this stage if some interesting 
biological material occurs in disordered yet oriented 
form, or call be brought into this form by the use of  
special supporting films, since this would greatly af- 
fect the motivation for extended theoretical studies 
on these lines. 
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