FIB-SEM Feb. 4, 2019

Outline

- SEM basics
- FIB Basics
- Application to room-temperature (conventional) specimens
- Use as a cryo-prep tool for cryo-TEM
- Use as a general prep tool (liftout) for TEM

SEM Basics

- Electron probe is focused to a sharp point
- The probe is scanned across the specimen point by point, with each point producing signal
- Scan coils deflect beam to move across sample

SEM Beam: probe size

- Ideally want as small a probe as possible, relative to pixel size
 Probe size is determined by voltage, current, divergence angle
- Lens distortions
 - Spherical aberration (focus different at center and edge of lens) – instrument dependent
 - Aperture diffraction
 - Astigmatism (user correctable)
 - Chromatic aberration voltage dependent

Goldstein et al, 2003

Beam-Specimen Interaction

- Monte Carlo simulation of a 20 keV beam in Si
 - Dark traces: electrons which left the sample (BSE's)
- Electrons may be scattered elastically or inelastically
- Probability of elastic scattering ~ Z²
- Inelastic scattering:
 - Secondary electrons
 - X-rays

Simulations at different voltages

Material Dependence of Interaction Volume

Carbon, 20 keV

Iron, 20 keV

Goldstein et al, 2003

Calculation of Beam Penetration

r (µm) =
$$\frac{2.76 \text{ x } 10^{-2} \text{ A E}_0^{1.67}}{\rho \text{ Z}^{0.89}}$$

where ρ = density of the material (g/cm³), Z = atomic number, A = atomic mass, and E_o = accelerating voltage.

Goldstein et al, 2003

Back Scattered Electrons and Secondary Electrons

Detectors can be tuned for either one, or for both

BSE efficiency is material dependent, voltage independent

Fraction of e's that backscatter

BSE's give contrast between light and heavy elements

Specimen Dependence of BSE, SE

SE's are less sensitive to atomic number than BSE's (may be more sensitive at lower beam energies)

Goldstein et al, 2003

Emission shape of BSE's

Most BSE's are released close to origin ("high quality" BSE's) Higher atomic number elements have sharper central peak

Goldstein et al, 2003

Angular Dependence of SE's

Goldstein et al, 2003

SE's also give topographic information

Secondary electrons are low voltage

Bombardment with keV beam

Goldstein et al, 2003

Detection of BSE's, SE's

Everhart-Thornley (ET) Detector

Electrons strike scintillator, releasing photons Photons travel to photomultiplier tube Eventually converted to electric signal, storing intensity values Combined SE/BSE detector

Apply bias

- Bias can be applied to detector, directing electrons toward or away from it
 - Negative bias (< -50 V): detect</p> only BSE's
 - Positive bias: collect more SE's, indirect BSE's : greater total signal

Positive bias

Goldstein et al, 2003

Through-Lens Detector (TTL)

SEM summary

- Images formed by scanning points across sample
- For higher resolution, want to minimize both probe size and interaction volume
 - Low voltage operation
 - But still need enough signal for detection
- Apply negative bias to detect mainly BSE's
- Backscattered imaging gives elemental contrast
- Secondary imaging gives more signal and topographic images
- Through Lens Detector for better resolution

Parameters for Optimal Imaging

- Voltage: lower voltage for less penetrance (but less signal)
 - Higher quality optics needed for very low voltage
- Current: Higher current gives more signal but a larger probe size
- Working distance: decreasing distance from lens increases signal
- Field of view (magnification): pixel size
- Dwell time per pixel
- Number of scans
- Detector type
 - EVT, TLD, ICE (SE's and ions)
 - SE, BS or mixed mode

Biological Imaging

- Biological specimens are mostly light elements: little elemental contrast
- Standard procedure, as with negative stain TEM, is to stain with heavy metal salts (lead, uranium, tungsten) and look at the stain
- Long procedure involving:
 - Tissue fixation
 - Substitution of water with organic solvent
 - Infiltration with resin
 - Staining of biological components
 - Polymerization of resin
- Worked out over past 50 years, many protocols for different cells, tissues, organelles
- Can get very fine ultrastructural detail

FIB Operation

Basic Mechanism

- Liquid Flow from Reservoir
- Ion Formation
- External Beam Interactions

Gallium is the Most Popular LMIS

A liquid metal

Room temperature operation

- Long lived (500-1500 hr sources)
- High vacuum compatible
- Large ion for sputtering

Ion Column

Source - LMIS at top

- Focusing Optics
 - Use Electrostatic lenses since ions are heavier than electrons.
- Deflection Electronics/Pattern Board
- High-speed Blanking
 - Need to prevent milling while blanking

Using the System

Beam Interactions

Ion Beam to Sample Interactions

Sputtered Particles

Sputtered Particle Ejection Behavior

Geometry

Geometry

Deposition

- (Methylcyclopentadienyl) trimethyl platinum
- Warm to gas, spray over sample with needle
- I-beam or e-beam interactions break it apart, deposit metal onto sample
 - Protection
 - Hard surface for mill

Applications to Resinembedded tissue

Tissue or Cells

Sample Prep

- High Pressure frozen (optional)
- Chemically fixed, freeze substituted
- Resin embedded
- En bloc staining
 - OsO₄, UAc, Pb citrate
 - Osmium impregnation (OTO)
 - Want to make samples more conductive, more heavily stained
- Thin conductive layer (C, Pt, Au-Pd) coated just before insertion

Imaging conditions

- Low voltage (2 keV or less)
 - Want to image only the surface
 - Minimal depth penetration (slice as thin as 5 nm)
 - No topographic information
 - Elemental contrast (C vs Os/Pb/U)
 - Through-lens detector for highest resolution
 - BSE mode (positive bias)
 - Stained parts will show up as bright on dark

Milling Samples

Set up for Slice and View

Milling: i-beam view

Example Movie: Neural Tissue

Ideal workflow

- Samples stained and embedded
- Thin slice for overall map make easier to find features (LM or ultrathin EM section)
- Face of block polished
- Set up for slice and view (1 day)
- Collect slices (1-5 days)
- Align, process (IMOD, Amira) (1 day)
- Segmentation (IMOD, Amira) (weeksmonths)
 - Neural network automation : EMAN 2.2

FIB/SEM for Cryo Prep

Mill a thin slice through a cell

1: Villa E, Schaffer M, Plitzko JM, Baumeister W. Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr Opin Struct Biol. 2013 Oct;23(5):771-7. doi: 10.1016/j.sbi.2013.08.006. Review. PubMed PMID: 24090931.

1: Villa E, Schaffer M, Plitzko JM, Baumeister W. Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr Opin Struct Biol. 2013 Oct;23(5):771-7. doi: 10.1016/j.sbi.2013.08.006. Review. PubMed PMID: 24090931.

Setup for standard Lamellae Preparation

FEI autogrid loading station with stereo microscope

Shuttle with 2 grids

Quorum cryo loading station

Cutting windows into cells and tissues

Find lamella in TEM

Ideal workflow

- Cells grown on gold grid, then plunge frozen
- Image by cryo-LM to find features (1 day)
- Load into FIB/SEM, mill slices (1 day)
- Load into TEM, collect tomograms (1-2 days)
- Align, process (Protomo,IMOD) (1 day)
- Segmentation (IMOD, Amira)
- Sub-tomogram averaging

Cryo-SEM imaging

Technical Note

Cryo FIB-SEM: Volume imaging of cellular ultrastructure in native frozen specimens

Andreas Schertel^{a,1}, Nicolas Snaidero^{b,1}, Hong-Mei Han^c, Torben Ruhwedel^d, Michael Laue^e, Markus Grabenbauer^{c,2}, Wiebke Möbius^{d,f,*}

^a Carl Zeiss Microscopy GmbH, Training, Application and Support Center (TASC), Carl-Zeiss-Straße 22, D-73447 Oberkochen, Germany

^b Cellular Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, D-37075 Göttingen, Germany

^c Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, D-44227 Dortmund, Germany

^d Department of Neurogenetics, Electron Microscopy Facility, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Straße 3, D-37075 Göttingen, Germany

^e Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Nordufer 20, D-13353 Berlin, Germany

^f Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany

In-lens SE detector at 2.33 kV

Lift Out

Use of FIB/SEM to prepare bulk material for TEM imaging

Area of Interest

http://www.fibics.com/fib/application/steps-in-tem-specimens-preparation-by-lift-out-method-/24/

Protect Area of Interest

Mill Trenches around area

Top View of Trench

Polish Section

Further Polishing

Iso-View of Second Polish

Frame Cuts to Define Area for Removal

Top View of Frame Cut

Iso-View of Frame Cut

Thin to Electron Transparency

Top View just before Removal

Remove Section and attach to manipulator (not shown)

Applications to Cryo

Mahamid J, Schampers R, Persoon H, Hyman AA, Baumeister W, Plitzko JM. A focused ion beam milling and lift-out approach for sitespecific preparation of frozen-hydrated lamellas from multicellular organisms. J Struct Biol. 2015 Nov;192(2):262-9. doi: 10.1016/j.jsb.2015.07.012. PubMed PMID: 26216184.

C Elegans Embryo HPF on grid

Equipment Needed

Cryo-Liftout

Figure 1. (Left) Cryo-FIB milling of a bulk sample to prepare a thin lamella, scale bar 5 μ m. (Right) extraction of the lamella by the cooled manipulator after attachment and release of lamella, scale bar 10 μ m.

Parmenter et al Microscopy Microanal (2014)

Cryo-Liftout

unou maging, as masuatou tor nou. spraciorado m (5).

Figure 2. Preparation of electron transparent lamellas of frozen-hydrated specimens by cryo-FIB lift-out. (a, c) Site-specific milling of a lamella from the vitrified sample. (b, d) Attachment of the frozen lamella to a liquid nitrogen cooled nanomanipulator using water vapor. After similar attachment to a cooled TEM grid, the lamella is thinned to electron transparency. (e) A top-down image of a lamella created from a solid–liquid interface shows sample thinning to <100 nm. The final sample (f) was subsequently transferred to the cryo-STEM for nanoscale chemical analysis by EDX (g).

Questions