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How to get from here                 over here                                   to there



Electrons                                                                                  generated in cathode

3D object                                                                                  molecule embedded 
in vitreous ice              

2D projection                                                                           recorded on film or digital
camera

Imaging in the 
Transmission Electron Microscope

Transmission means that the signal is generated from electrons passing through the 
specimen.  We see a 2D projection = line integral over the 3D density along the beam.



How to get from 2D to 3D: The Projection Theorem

�The 2D Fourier transform of the 
projection of a 3D density is a central 
section of the 3D Fourier transform of the 
density, perpendicular to the direction of 
projection.�

3) It is necessary to collect a sufficient 
number of projections over a large 
angular range.  From these projections,
the object�s density distribution can be
reconstructed.

1) The transmission electron microscope
forms projections of the 3D object.

2) The Projection Theorem:



Aaron Klug and David DeRosier, 
Laboratory for Molecular Biology, MRC, 
Cambridge

First 3D reconstruction from EM images:
3D reconstruction of bacteriophage 
Tail using the Fourier-Bessel approach

1968



How . . . do we collect the projections?

Three data collection strategies for 3D reconstruction:



Interactions of electrons with biological matter at 100 – 300 kV

•Elastic (high-res signal) vs. inelastic   
scattering (low-res, delocalized signal)

•Transmission electron microscopy: 
maximum thickness is ~0.25 μ = 2500 Å

•Larger thickness leads to multiple scattering 
and, eventually, total absorption

•



RADIATION DAMAGE

� Biological molecules are being destroyed by the electron beam.  
Electrons are an ionizing 
radiation, splitting bonds, which results in the creation of free radicals.  

� These free radicals cause further damage as they migrate from the 
original site to other 
sites of the molecule.

� Cooling to liquid nitrogen traps the free radicals, and thereby 
reduces radiation damage.

� Radiation damage affects small, high-resolution features more 
strongly than features at low resolution.

�



Critical exposure Ne as a function of spatial frequency
Grant & Grigorieff, eLife 2015

Example: to get 4Å resolution, the exposure should be 
below 5 electrons/Å2

RADIATION DAMAGE



The Single-Particle Approach to Averaging and
Reconstruction in EM of Macromolecules

�Single� = unattached, free from contacts with other molecules.
This affects methodology of specimen preparation, electron microscopy, and image 
processing.

Why single particles?
Advantages: 
• no crystal needed
• native conformation, unaffected by crystal packing
• functionally meaningful states can be visualized
• no part of the molecule needs to be chopped off for visualization
• multiple states visualized from the same sample 
• ideal for looking at the dynamics of a molecular machine
Disadvantages (up to 2012):
• large computational challenges
• atomic resolution difficult to achieve for particles lacking symmetries



Single-Particle Reconstruction
Main initial assumptions in signal processing:

1) All particles in the specimen have 
(approx.) identical structure

2) All are linked by 3D rigid body 
transformations (rotations, 
translations)

3) Particle images are interpreted as 
a �signal� part (= the projection of 
the common structure) plus 
�noise�

Important requirement: 
even angular coverage, without 
major gaps.



Specimen preparation
• Purified sample – standards of purity have changed with the advent of 

classification (“computational purification”).  In some experiments it is 
even desirable to  admit molecules in different conformational and 
compositional states.

• Apply sample to EM grid as a thin film (~1000 Å) suspended over holes.
• Carefully controlled blotting is a critical step – control blotting force and 

blotting time
• Coverage with molecules is determined by: 

(1) sample concentration
(2) geometry and makeup of metal grid  -- copper, molybdenum, gold

copper (traditional), molybdenum (match heat expansion of 
carbon), gold (avoid charge-induced vibrations)



Plunge-freezer to prepare samples for cryo-EM
Manual                     automated, climatized



EM grid, Copper, 3 mm                         Carbon layer on EM grid

Home-made                   Quantifoil or C-flat

Specimen support

Qantifoil vs.  C-flat grids: different edges, different thickness, 
different geometry for meniscus   





EXAMPLE OF MENISCUS EFFECT: 
MOLECULES ACCUMULATE NEAR EDGE OF HOLE

Thick ice

Thin ice



Copper grid

Quantifoil

thin carbon (optional)
water à vitreous ice molecules



Cross-section of ice layer    A. Nobel, NYSBC, biorxiv 2017



Russo and Passmore, Science 2014

GOLD GRIDS

John Russo and Lori Passmore
discovered that the carbon over the grid 
square oscillates like a drum, moving up 
and down.  

There is a sideways component, 
as well.

Gold grids reduce this effect 
50-fold.



Russo and Passmore, 
Science 2014

GOLD GRIDS VERSUS CARBON GRIDS: VIBRATION IN Z-DIRECTION



3D reconstruction requires even angular coverage

good bad

�global coverage� �single-axis-like coverage�



Des Georges et al., book chapter, 2013

Angular coverage



Illustration of sample on grid:

After blotting, the grid is covered with thin layer of liquid containing molecules 

















Micrograph of eukaryotic ribosomes, recorded with 
direct electron detection camera



Determine orientations, 3D Reconstruction



Image classification



Signal and noise -- definition of SNR

• Signal  s(r) (predictable, deterministic, originating from the object)
versus

• Noise  n(r) (stochastic; unrelated to the signal; aperiodic [no two 
realisations are the same])

• Signal-to-noise ratio (SNR) = signal variance/noise variance

• Averaging over N noisy realizations of a signal increases the SNR by a 
factor of N

• Note that what is signal and what is noise in a given experiment depends 
on the way the experiment is designed.  



“Shot Noise”
At the low exposure settings (e.g., 10 e/Å2), required to avoid radiation damage, 
the fluctuations of the electron distribution is a serious source of noise, called 
shot noise.  Low-exposure images typically have an SNR of 0.1 (signal variance 
is only one tenth of noise variance.

Only by averaging over a sufficient number of particle projections can the
original signal be retrieved.

Simulated images of ribosome at SNR ~ 0.1

Schwander et al., Phil. Trans. Roy. Soc. 2014



“Structural Noise”

The matrix of ice, and carbon deposit (if used) has a unique structure which
is superimposed when a projection image is formed.  When images of particles
are averaged, the superimposed structure of the surrounding must be considered
�noise� since it is not reproducible from one particle to the next..



An image can be considered a superposition of sine waves of different 
spatial frequencies running in different directions.  Each sine wave is 
characterized by an amplitude and a phase.
Alternative representation (as in this diagram) employ complex exponential 
functions with complex coefficients.



An image f(m, n) is represented as a finite series of 2D exponentials 
with complex coefficients F(u,v).



The discrete Fourier representation implies repetition of the 
image on an infinite lattice

.      .      .

.      .      .

.      .      .

.       .       .       .      .      .  

.       .       .        .      .      .                          .  .  .  



Notations:

Fourier transform:  F(k) = F {f(r)}
Inverse Fourier transform: f(r) = F-1 {F(k)}

r = (x, y)
k = (kx, ky) 
“spatial frequency”

Lower case

Upper case

Fourier operator



Parseval�s Theorem -- conservation of power, or 
conservation of information content

F(k) = F {i(r)}      
definition:  P(k) = |F(k)|2 is the “Power spectrum”

Total power is the same in real and Fourier space:
∫ø|F(k)|2 dk = ∫ |i(r) – avrg|2 dr
where avrg = 1/area x ∫ i(r)dr
and subscript ø indicates �exclude origin in the integration�

Application: Signal-to-Noise ratio can be computed in Fourier 
space:

SNR =  ∫ø|S(k)|2 dk/ ∫ø|N(k)|2 dk



Point spread function and Contrast transfer function
In an optical instrument, the aperture limit, the aberrations of the lens and other 
imperfections have the effect that a single point in the object is imaged as an 
extended 2D function, the so-called Point Spread Function (PSF)

The Fourier transform of the PSF in EM is the Contrast Transfer Function (CTF).

In the Transmission EM, the CTF is given by an analytical expression:

defocus ax. astigmatism spherical aberration

where

k = spatial frequency vector;  k = length of this vector

wave aberration function





Point-Spread Function =
Response of the optical instrument to a point object

x

y

The point spread function has finite width, and is centered at the location 
that the point would have in the image formed by an ideal instrument.



¢ =

An object consisting of on arrangement of points, convoluted with the 
point spread function of the optical instrument, results in an image in which 
each point is replaced by the PSF..

OBJECT                                        PSF             IMAGE =  CONVOLUTION
PRODUCT 

Convolution theorem

“Con-
voluted 
with”



Contrast transfer function

Envelope function due to
energy spread 
and angular spread
“partial coherence”

spatial frequency

1

0

-1



Effects of energy spread and angular spread

• Energy spread: voltage changes à wavelength changes
• Defocus spread: defocus changes have approx. same effect as 

voltage changes
Envelope function due to energy spread/defocus spread is   

independent of defocus

• Angular spread: point source replaced by extended source –
convergent (non-parallel) illumination
Envelope function is defocus-dependent

CTF(k) = CTFideal(k) x Eenergy spread(k) x E angular spread (k)



Defocus (and hence the CTF) is affected by the
particle’s z-position within the ice layer.

Ideally, defocus should be measured for each particle separately,
but the signal is often not strong enough.

dΔz

Ice layer large compared with particle diameter



Contrast transfer function

Coherent

Partially
coherent

Power spectrum
“Thon rings”

after Fritz Thon, a pioneer
in optical diffraction analysis



What Thon rings show: 

1) how far the information transmitted ranges in Fourier space
2) whether the lens is astigmatic (CTF depends on angle in the plane)

Why do we see rings?  Because for an amorphous object, such as carbon,
the amplitudes of Fourier components are roughly the same throughout Fourier
space.  Without CTF, we would see a uniform (white) disk up to the radius that 
corresponds to the resolution limit.
Instead we see concentric white rings separated by black lines (zero transitions).



Two-dimensional processing:  averaging of like images 
to eliminate noise

Averaging requires the images to be aligned: in the array, each image 
element, or pixel, must refer to the same point of the object.  

Note: averaging in 2D only makes sense for molecules presenting the 
exact same view



average                     variance map       standard deviation map

40S ribosomal subunits of HeLa cells, negatively stained

Frank et al., Science 1981



Alignment of single-particle projections 
(�particles�) is achieved by cross-correlation

• Translational cross-correlation function (CCF)
Discrete, unnormalized version:

• Rotational CCF – the same summation as above, but this time
one image is rotated with respect to the other
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dydxyyxxhyxoxs CCF(x, y) = s1(x ', y ')s2 (x + x ', y+ y '∫∫ )dx 'dy '

or

CCF(r ) = s(r ')s(r + r ')dr '∫ + noise_ term

2D CONVOLUTION                        2D CROSS-CORRELATION 

Fourier space:    S(k) =  O(k) H(k)                          Φ(k) = S1(k) S2*(k)

Short notation:    s(r) = o(r) ο h(r)                           CCF(r) = s1(r)  � s2(r)

In Fourier space, a real-space convolution becomes a scalar product,

a cross-correlation integral becomes a conjugate product 



=�

Images identical
CCF peak is sharp, well defined

CCF(x, y) = s1(x ', y ')s2 (x + x ', y+ y '∫∫ )dx 'dy '

or

CCF(r ) = s(r ')s(r + r ')dr '∫ + noise_ term



=�

Images dissimilar, but face is in the same place
CCF peak is unsharp, not well defined



ACF of image:    (S H) (S H)* =  (S S*) (H H*)    ACF of S convoluted with ACF of PSF 

CCF of 2 images of same signal with different CTFs: 

(S1 H1) (S1 H2)* =  (S1S1*) (H1 H2*)     ACF of S convoluted with CCF of PSFs 



Value of normalized CCF peak as a function 
of the difference in focus, δΔz

(Scherzer) normalized defocus =1                 normalized defocus = 10

Normalized defocus = Normalized defocus = 



Padding is needed when CCF is computed  via Fourier methods:



Need for padding follows from 
the discrete Fourier representation:

Nonpadded image would get superimposed on a copy of itself



Translational alignment using the CCF –
a practical example

CCF                      shift of peak from origin           one of the images,
indicates relative shift of images            padded

The peak indicates postion of perfect alignment of two images of the same molecule 



Tools: CCFs of micrographs of the same 
specimen, as a function of δΔz

To get sharpest CCF peak (yielding highest alignment accuracy), both images 
to be aligned should have the same defocus



Criterion for detection of CCF peak: 
feasibility of alignment

Because of the low signal-to-noise ratio in the images, there exists a critical 
threshold for the feasibility of alignment of two raw images of a molecule.

The critical parameters are:

pcrit -- maximum exposure [electrons/unit area] the molecule can tolerate
D -- particle size
c – contrast
d – resolution (in real space)

Particle size D should satisfy
2

3

crit

D
c dp

³

Saxton and Frank (Ultramicroscopy 1977) 

also see Henderson (Quart. Rev. Biophys. 1995): number of molecules of a given 
size required to reach 3A resolution, based on scattering data for electrons, X-rays, 
and neutrons. 



How to combine translational and rotational alignment: use of invariants, 
such as the autocorrelation function



Properties of the Autocorrelation Function

• The autocorrelation function of an image preserves directional features of 
the image 

• For instance, correlations, within the same image, between distinct 
maxima separated by a vector

• The ACF is centro-symmetric
• Example: an image consisting of three dots:
•

IMAGE               AUTOCORRELATION FUNCTION

origin



The molecule in arbitrary 
positions

ACFs of molecules above

Noise-free molecule and
its ACF



ACF – based alignment method



Variance map

• The variance map is a �byproduct� of the averaging.  It can be used to find 
the regions where the images, on average, differ maximally.

• It is also the yardstick that helps determine whether or not a density in a 
difference map is significant.
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average                                  variance map s.d. map



Alignment of frames in movie mode of Direct 
Electron Detection cameras

Most DED cameras allow
data to be collected in multiple
frames.  This makes it possible
to correct for drift, even on
the level of single particles.



S. Scheres, eLife 2014(vectors of motion are exaggerated)



Peaks are distinguishable            Peaks are just resolved             Peaks blend into a                              
single one

when distance is > drayleigh                  when distance is = drayleigh when distance < drayleigh 

Point Spread Function

Sum Curve

Resolution criterion:  Images of two points, as function of their separation

E. V. Orlova and H. R. Saibil, in Chemical Reviews 2011



Resolution definition, determination in 
Fourier space

• Resolution is a reciprocal quantity, measured in Fourier space
• Defined as the spatial frequency [1/Å] up to which information is 

reproducible, by some measure of reproducibility
• Decomposition of information, by Fourier rings
• Randomly picked halfsets (e.g., odd- vs. even-numbered images)
• Compare averages [reconstructions] from halfsets over rings (shells) in 

Fourier space

F1 (k)                                                            F2 (k)

k, Δk

k ring radius 
Δk ring width



Resolution measures & criteria:
Fourier ring/shell correlation

k = spatial frequency vector
k = |k| abs. size of spatial frequency
Δk = ring width or (in 3D) shell thickness
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F1(k), F2(k)  Fourier transforms of halfset averages 
(or halfset reconstructions)



Conservative; SNR =1

following 
“gold standard”
protocol

0.5

0.143



Multivariate Data Analysis
and Classification

• Images often need to be sorted into classes
• Heterogeneity is due to (1) different viewing angle and (2) different 

conformations of the molecules
• Sorting them visually only works in the simplest cases
• Multivariate analysis reduces the dimensionality of the classification 

problem

Classification in 2D
RATIONALE:

Inventory of existing views



Liao et al., Nature 2013



An image represented in a high-dimensional 
Euclidean space.

• An image represented by an array of N x M pixels can be thought as a 
vector in a (generalized) Euclidean space with N x M dimensions

• For example, an image of 64 x 64 pixels is a vector in a 4096-dimensional 
space

• If two images are �similar� it means the distance between the vectors 
representing them is small.  That is, the vector end points lie close 
together

• Groups of similar images form clusters in the generalized Euclidean space
• To show the concept, and introduce an important tool for classification, I 

will use a simplistic image containing only two pixels



density of
pixel #1

density of pixel #2

Introducing: a set of images, each consisting of 2 pixels

Similarity = closeness in 2-D Euclidean space
Two images are similar if their (generalized) Euclidean
distance is small



density of pixel #1

density of pixel #2

Projection onto axis 1

A set of images consisting of two pixels: Intro into classification

Fortuitous case: 
direction of grouping  
happens to coincide
with a primary axis.



density of pixel #1

density of pixel #2

Projection onto axis 1

General case:
grouping is in a direction
that does not coincide
with a primary axis.



density of pixel #1

density of pixel #2

Projection onto axis 1

New axis required for showing
clustering!
(linear combination of

axes 1 and 2)



Tools: Classification, and the Role of MDA

• Classification deals with �objects� in the space in which they are represented.
• For instance, a 64x64 image is an �object� in a 4096-dimensional space since, in 

principle, each of its pixels can vary independently.  
Let�s say we have 8000 such images. They would form a cloud with 8000 points in 
this space.   This is an unwieldy problem.

• Unsupervised classification is a method that is designed to find clusters (regions of 
cohesiveness) in such a point cloud.

• Role of Multivariate Data Analysis (MDA): find a space (�factor space�) with 
reduced dimensionality for the representation of the �objects�.  This greatly 
simplifies classification.

• Reasons for the fact that the space of representation can be much smaller than the 
original space: resolution limitation (neighborhoods behave the same), and lateral 
correlations due to the physical origin of the variations (e.g., movement of a 
structural component is represented by correlated additions and subtractions at the 
leading and trailing boundaries of the component).

•



Principle of MDA:
Find new coordinate system, tailored to the data

X= matrix containing N 
image vectors (each with
J elements) as rows

x

Pi

p. 151 [note 
error in book 
figure!]

max''')'()()( !2
1

2
1

¾®¾===åå ==
XuXuuXXuuxOP N

i i
N

i i

ix



Brétaudière JP and Frank J (1986) J. Microsc. 144, 1-14

32 x 32 phantom images in 8 (= 23)  varieties



p. 163Tools



eigenvalue histogram

3 stand out,
i.e., 3 factors are 
sufficient.!

p. 167



Data are clustered in the eight corners
of a 3D factor space formed by the first
three factors.

1 vs 2

1 vs 3

2 vs 3

p. 168



MDA: eigenimages

+               - rec +        rec -

• Factor 1

• Factor 2

• Factor 3

p. 175



+               - rec +        rec -

• Factor 1

• Factor 2

• Factor 3

p. 175

Example Factor 2: position of eyes.   Average contains centered oval 
(from superposition of all images containing eyes shifted to right with 
those having eyes shifted to the left).

To express the eye-related features of the images, the eigenimage must 
either subtract density on the left and add it on the right, or vice-versa.



Class Averages

Instances

Total Avrg + F1

Total Avrg + F1+F2

Total Avrg + F1+F2+F3

+      -

p. 159

p. 176

p. 175

Stepwise reconstitution
of an image



3D reconstruction -- preliminaries
• Under what conditions are projections of an object similar to 

one another?
• Similarity ßà closeness in high-dim E-space

ßà belonging to the same cluster
ßà high correlation



Shape Transform
• The Shape Transform is the Fourier transform of a binary mask 

function (1 inside, 0 outside) whose shape is the shape of an 
object in 2D or 3D

• It indicates the size and shape of the local region in Fourier 
space within which Fourier coefficients are 
correlated/dependent.

Shape

Shape Transform



Shape Transforms



P1, P2  central sections in Fourier space.
Δθ  angle subtended by P1, P2
D  particle diameter

Similarity of projections, condition for 3D reconstruction, 
and �kissing� shape transforms

Shape transform

Critical radius R
determines resolution



Determination of Particle Orientations

(A) unknown structure -- bootstrap
(1) Random-conical (uses unsupervised 

classification)
(2) Common lines/ angular reconstitution 

(uses unsupervised classification)

(B) known structure – low-res map available
(1) reference-based (3D projection matching 

= a form of supervised classification)
(2) common lines/ angular reconstitution

?

?

?

?

? ?



0-degree view

RANDOM CONICAL RECONSTRUCTION



50-degree view



Equivalent geometry
in the coo system of the particle



Conical Data Collection Geometry in Fourier 
Space

Lanzavecchia et al.                    



Common line C-C� of two projections represented by 
central sections P1 and P2

P1

P2

C

C�

COMMON LINES APPROACH TO DETERMINING ORIENTATION



Two 2D projections of the same 3D object have in common:

in Fourier space:  Fourier coefficients along the 
line of intersection: �common line�

in real space:  1D projections in particular directions

The Sinogram (or Radon transform) of an image is an 
exhaustive ordered display of all of its1-D projections

Comparing two sinograms, one can find the angles for 
which maximum agreement is reached



2D Projection #1

2D
 Proj

ec
tio

n #
22D Projection #3

3D Structure

1D Projection #1 1D Projection #2

J. Frank, in Molecular Machines in Biology 2011



J. Frank, in Molecular Machines in Biology 2011

Determination of orientation by projection matching



Initial Angular Grid

83 directions
~15 degrees separation



83-projection grid                       averages of particles classified



J. Frank, in Molecular Machines in Biology 2011

Iterative Angular Refinement



Angular Refinement

Given an initial 3D reference,

Iterate the steps {3D projection matching + reconstruction}
Decrease angular grid size as you go on (range: 15�è 0.5�)

Convergence criteria:  
(1) convergence of particle angles
(2) convergence of resolution (monitor progress with FSC)

�Rule of neighborhood� saves computing time



• questions



• Start with coarse grid (15 degrees)
• Decrease angular separation, down to 0.5 degrees
• At some point, switch from global coverage to local coverage 

of previously determined angles

Increasingly finer angular increments



FSC  following progress of refinement



3D Unsupervised Classification

Statistical model:
each image is a projection of one 
of K underlying 3D objects, k.

with addition of 
white Gaussian noise

Unknowns: class numbers k, rotations, translations

k=1 k=3k=2



white noise = 
independence between pixels!

j

P(data image|model image) ~

P P(Xj|Aj)

Statistical model: the probability that Xj is observed at pixel j, 
given the data model Aj , has Gaussian distribution centered on Aj 

, with halfwidth σ

m
od

el
da

ta

Aj Xj

s

For each pixel j:

( )(Xj – Aj)2

-2s2P(Xj|Aj)~ exp



Likelihood

• Find a model Q that optimizes the log-likelihood of 
observing the entire dataset:

( ) ( ) ( )å ååå
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integrate over all unknowns!

Optimization algorithm: Expectation Maximization

The model Q comprises: estimates for 3D objects, s, …

class



Pre-translocational states of wt 70S E. coli ribosome 

Agirrezabala et al., PNAS 2012

no A-site tRNA
ML3D



QUESTIONS?



Generalized Euclidean distance
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const.                 const.                                        cross-correlation

Similarity = closeness in high-dimensional Euclidean space = small E-distance
à large value of CCF peak at matching position

Euclidean distance between two images f1 and f2:



It’s easily verified that the Fourier transform of any real-valued 
image  has the following property:

F(kx,ky) = F*(-kx,-ky)         (Friedel’s Law)



Examples for Fourier transforms of simple 
functions:











Units of spatial frequency in 2D Fourier space

0
1/6           1/3  Å-1 = 0.5/d

0.25           0.5   Nyquist

Spatial frequency is either in Nyquist units (0… 0.5) or in physical units 0.5/d 
relating to the sampling step d.  In above example, sampling step is  d = 1.5 Å

+ky

+kx




