Interpreting "moderate" resolution EM data

Gira Bhabha & Damian Ekiert Skirball Institute NYU School of Medicine

Resolution of cryo EM maps is typically low

2018: 1771 total maps released, only 98 at 3 Å resolution or higher

At atomic resolution, position of individual atoms is well-defined

But at "near-atomic" resolution, the position of residues and side chains is not always clear

Between ~5-8 Å, we lose our ability to resolve secondary structure

How can we interpret lower resolution cryo EM density maps to gain insights into molecular and mechanistic problems in biology?

Harnessing prior knowledge of protein structure to bridge the gap

Stereochemistry

Bond lengths, angles, and torsion angles

Stereochemistry

Secondary Structure

https://www.ebi.ac.uk/training/online/course/biomacromolecular-structures-introduction-ebi-reso/proteins/levels-protein-structure

Folds and domains

Limited number of protein folds (few thousand), and most have been solved Most likely, *your favorite protein* is composed of one or more known domains

Information from known domains accelerates model building and assigning connectivity at modest resolution, and interpretation of low resolution maps where secondary structure is not apparent

Quaternary Structure

Biochemistry/Bioinformatics

Information about domain-domain interactions and residue-residue proximity can come from a variety of sources:

- Yeast 2-Hybrid
- Co-IP
- Cross linking
- Co-evolving residue pairs

RIDHRLKNTDH FLNGRLRDTDH HERQETGELKH KYRT**R**LTDL**DH** RRAMEVGNLKH TQKEELANLKH **KQQSE**VENAKH RLNQRADDLDH Correlated

Information can be used early to guide modeling, or later to validate the final model

Mutations

~15A - 10A Localizing domains in complexes/large proteins of unknown structure

- 1. Example: human Dicer structure (Lau et al, *Nat Struct Mol Biol.*; 19(4): 436–440. doi:10.1038/nsmb.2268)
- 2. ~9A 7A Domain rearrangements in proteins of known structure
 - 1. Example: conformational changes in dynein motor domain (Niekamp et al, BioRxiv 2019)
- 3. ~7A 4A Interpreting secondary structure and "near-atomic" features

Target protein: human dicer

- Discreet domains
- Some crystal structures known
- No information on relative orientations

Low resolution map

- What goes where?
- Can domains be fit into this map reliably?

- Each domain labeled individually
- Data collected for each construct
- Streptavidin localized on each construct to map domain

C

ds RBD

- Even at low resolution, insights into relative domain organization are possible
- Depending on your biological question at a given time, resolution where domain-level assignments are possible may be very insightful

- 1. ~15A 10A Localizing domains in complexes/large proteins of unknown structure
 - 1. Example: human Dicer structure (Lau et al, *Nat Struct Mol Biol.*; 19(4): 436–440. doi:10.1038/nsmb.2268)

2. ~9A - 7A Domain rearrangements in proteins of known structure

- 1. Example: conformational changes in dynein motor domain (Niekamp et al, BioRxiv 2019)
- 3. ~7A 4A Interpreting secondary structure and "near-atomic" features

AAA (ATPases Associated with diverse cellular Activities) family of proteins are usually organized as homo-hexametric rings

Anatomy of a dynein motor domain: a unique AAA protein

AAA6

AAA2

₋inker

AAA5

AAA4

AAA3

ITBD

The dynein motor domain is conformationally heterogeneous and not a stellar cryo EM sample*

*newer sample preparation strategies may be a game changer...

In "good" areas, secondary structure can be seen, in "average" areas, not so much

But we have enough information to fit each subdomain as a rigid body simultaneously (Chimera)...

Useful info #1: nucleotide-dependent subdomainlevel conformational changes*

*snapshots here from X-ray & EM

Dynein mutant: two classes distinguished at lower resolution

Key aspects of interpretation:

- Inspect the features of the density in the local area of interpretation
- Confirm ligand binding using biochemistry/ functional assays with the same protein prep (ligands are not going to be visible at this resolution)
- Try a few different classification strategies to convince yourself that the classes you find are "real"

в

D

Mutant 5 : AMPPNP

Α

- 1. ~15A 10A Localizing domains in complexes/large proteins of unknown structure
 - 1. Example: human Dicer structure (Lau et al, *Nat Struct Mol Biol.*; 19(4): 436–440. doi:10.1038/nsmb.2268)
- 2. ~9A 7A Domain rearrangements in proteins of known structure
 - 1. Example: conformational changes in dynein motor domain (Niekamp et al, BioRxiv 2019)

3. ~7A - 4A Interpreting secondary structure and "near-atomic" features

Finding secondary structure in maps

Helices at ~8.5 Å Resolution

PDB ID: 607X

Helices at ~7.5 Å Resolution

Helices at ~6 Å Resolution

Helices at ~4.9 Å Resolution

Helices at ~4.5 Å Resolution

Helices at ~4.2 Å Resolution

Helices at ~3 Å Resolution

Beta strands at ~8 Å Resolution

Beta strands at ~5.9 Å Resolution

Beta strands at ~4.85 Å Resolution

Beta strands at ~4.5 Å Resolution

Beta strands at ~3 Å Resolution

What to expect at

Make sure you get the "hand" of your map right!

Box 4-1 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Make sure you get the "hand" of your map right!

Beta sheets have a left-handed twist

Image credit: Cutts et al, Biochemical Society Transactions, Oct 09, 2015, 43 (5) 838-843

Example case: ~4 Å structure of PqiB

Ekiert & Bhabha et al, Cell 2017

Blue = 3.1AGreen = 4.3ARed = 6A Prior Knowledge: Structure of domain and quaternary structure

Where to begin: Domain fitting

Where to begin: Fitting known domains

- Ģy

Mystery Densities

Helices or Strands?

Packing distances between helices: ~7-10 Å

Spacing between beta strands: ~4.5 - 5.0 Å

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000714 http://www.cureffi.org/2015/02/19/protein-folding-03/

Take-home messages

- Assess the quality of a given area of the map by looking at features in the density, not reported resolution
- Don't over-interpret the map!!
- Be aware of alternate interpretations of the map (if a domain fits equally well in more than one orientation, and your map does not have features to distinguish between the two, then you cannot conclude the right orientation without further experiments)!
- Decide at what level your map allows reliable fitting: rigid body domains? subdomains? Secondary structure? Amino acid residues? Rotamers? Waters?
- Use all available data:
 - Is your interpretation consistent with biochemical data? Functional data? Mass spectrometry data?