
Tips and tricks for manual model building of atomic models into cryoEM maps.
Oliver Clarke



An atomic model is a compact interpretation of the density map in 
light of prior knowledge (both specific and general).

• Aim is to build a model that is consistent with both the density map and everything we 
independently know about the structure/composition of the  macromolecule of interest, 
both specifically and in terms of our general knowledge of protein structure and chemistry.

• At medium resolution (3-5 Å), this still requires manual building. Even the best autobuilt
model still requires a lot of manual inspection and correction in most cases. (generates 
many fragments which need inspection, correction, merging)

• Tradeoff between available prior knowledge and required resolution for atomic modelling –
at the extremes, if a complete crystal structure is already available, 10Å data may be 
sufficient, while if no sequence/composition data is available even 3Å may not suffice.



Prior knowledge
• Protein sequence and derived info (secondary 

structure predictions, covariation/conservation, 
patterns of large/aromatic residues), disorder & 
contact prediction

• Crystal structures (+ homology models)
• Knowledge of protein structure, folding, chemistry, 

geometry.

Density map
• Resolution (+ local resolution, + map 

modification/sharpening)
• Patterns of large/small/absent sidechains
• Sharpening and density modification
• Conformational/compositional heterogeneity

Atomic model

• If possible, unique model that agrees with both density map and priors
• Otherwise (and per region), specify ambiguity (w/UNK residues and 

numbering or Ca only model) 
• Validation not just (or even mostly) about overfitting.
• Identify, analyse, fix errors.
• Direction and register of sequence fit.
• Ligand identification/assignment.
• No model is or ever will be perfect. That’s okay.

COOT, Chimera, autobuilding



Before you start – make sure your maps are appropriately sharpened and low pass filtered! (and consider whether building 
is justified or whether further improvement of the reconstruction is required first)

• Often it is helpful to build using multiple maps. Assuming 3-3.5Å global res, I would 
suggest using a map filtered to the global resolution, one filtered to the best local 
resolution, and one filtered to ~4-4.5 Å (to better visualize connectivity).

• Try both simple B-factor sharpening and the approach used by phenix.auto_sharpen, 
which incorporates anisotropy removal. CisTEM sharpen_map also seems to give very 
good results in some cases.

• Also, if your map doesn’t “look like” 4 Å, trust your eyes! If it is nominally 4Å and there are 
no sidechains visible, or your helices look “stretched”, assess orientation bias (3D-FSC 
server: https://3dfsc.salk.edu), local resolution variation, and double check sharpening and 
masking parameters (are you *sure* you’re looking at the sharpened map? Is the mask 
used for FSC calculation sensible?)

https://3dfsc.salk.edu/


Prep for model building - what can we learn from the sequence alone?
Your protein sequence contains a lot of useful information which you can use to aid model 

building:

• Start by identifying boundaries of conserved domains (NCBI CDD: 
https://www.ncbi.nlm.nih.gov/Structure/cdd/; DELTA-BLAST also performs CD-search by default)

• Then identify suitable structural templates for building known domains: FUGUE, SPARKS-X, PHYRE2, MUSTER.

• Secondary structure, TM & disorder prediction (XtalPRED for overall summary; specific tools such as SPOT-

DISORDER, SPIDER3 for best accuracy).

• Contact prediction from evolutionary couplings: EVFOLD & GREMLIN.

• Conservation analysis: Use favorite MSA algorithm (MUSCLE & CLUSTAL-OMEGA work well; TM-COFFEE, 

PRALINE-TM useful for membrane proteins) to create a sequence alignment of your protein with a few 

orthologs; gaps & insertions most commonly occur in loops/disordered regions. Useful as a guide during 
building.

https://www.ncbi.nlm.nih.gov/Structure/cdd/
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CDD provides a guide to domain level architecture, including sequence alignments & representative structures.

Once an initial trace is obtained
for these regions, use DALI or 
PDBeFold to identify structural 
homologs that could not be 
identified by sequence alone.
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XtalPRED is a great tool for summarizing predicted sequence properties.

Highlights predicted secondary structure, disorder, low complexity regions on sequence in an easily digestible format. Useful
to print and consult while building. Also provides list of structural homologs. (http://ffas.burnham.org/XtalPred-cgi/xtal.pl)

(Also consider using some of the newer single purpose neural-network based classifiers; e.g. SPIDER-3 & SPOT-DISORDER-
SINGLE from Yaoqi Zhou lab: http://sparks-lab.org/index.php/Main/Services )

http://ffas.burnham.org/XtalPred-cgi/xtal.pl
http://sparks-lab.org/index.php/Main/Services


Secondary structure prediction is a very useful guide when building. 

Where is this motif in the sequence?



Secondary structure prediction is a very useful guide when building. 

Secondary structure prediction is ~80% accurate. So if your model consistently 
disagrees with predicted secondary structure, look at it very closely!



What can we learn from the map alone?
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Left handed! Obvious here – can be less clear at lower res, so be careful.



OK, that’s better! What can we learn from the map alone?
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Can we identify any probable sidechains from the density?
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Test the initial hypothesis by extending sequence assignment along the chain.

…VFNSLTEYIQGPCTGNQQSLAHSRLWDAVVGFLHVFAHMMMKLAQDSSQIELLKELLDLQ…
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Notice that the absence
of large sidechain 
densities at small 
residue positions is just 
as valuable in validating 
the fit as the fit of large 
sidechains to the 
density.



Test the initial hypothesis by extending sequence assignment along the chain.

…VFNSLTEYIQGPCTGNQQSLAHSRLWDAVVGFLHVFAHMMMKLAQDSSQIELLKELLDLQ…

Also, note that the 
information content of 
local regions varies. 
Consider 
“VTVVAASSTVV” vs 
“FGAAYWVTRA” – which 
is more likely to be 
uniquely identifiable 
from the map?



How to deal with uncertainty in sequence assignment and sidechain placement

• You will likely encounter situations where you cannot be certain of the local sequence 
register – what to do?

• No clear consensus, but I suggest assigning residue code as “UNK” and numbering to “best 
guess” value. A more granular way to quantify/convey uncertainty would be helpful!

• Sidechain placement – two main camps – trim sidechains to density vs place them all (+/-
zero occ.). The former may sound more conservative, but it can hide errors during 
validation (during analysis of clashes). Either is acceptable, just be consistent, and 
preferably outline the approach taken when writing up the structure.



Prior knowledge can come in many forms – use any and all available info to guide model building.

Here, serendipitous identification of a conformational class of RyR1 lacking density for one subunit aided 
identification of protomer boundaries. In other cases, cross-linking data or NS data on subcomplexes or Fab-
complexes may be helpful.



In a similar manner, we can use locally aligned difference maps between holo and apo
structures to locate ligands.



The three ligands are clustered around the C-terminal domain.

(Ca2+ only) minus (EGTA only)



The three ligands are clustered around the C-terminal domain.

(ATP/Caffeine) minus (EGTA only)



Very good difference density even at moderate (3.8Å) 
resolution. Highlights importance of phases!



Secondary structure and the Ramachandran plot

• Describes geometrically favored backbone torsions (omega 
generally 180, except for prolines)

• At high resolution, outliers may be justified by density

• At low resolution, we can’t see carbonyls, so much harder 
to justify Ramachandran outliers.

• This is the general-case Rama plot - distribution is different 
for ”special” residues (pro, gly, pre-pro)

(http://www.biochem.ucl.ac.uk/~martin/c40/peptide.html)



Helices – alpha and 310

Alpha
• ~90%
• 3.6 residues per turn
• Fat

310
• ~10%. More common in TM? (e.g. S4 of VSD)
• 3 residues per turn. Triangular cross section.
• Skinny
• Can be tricky to identify at low resolution, 

can lead to register errors.



Beta sheets

• Can be parallel or antiparallel in orientation 
(antiparallel more common and stable)]

• Twist of beta sheet varies, leading to more diversity 
than for alpha-helical structures.

• Harder to build at low resolution  - whereas a helix 
can be placed at ~7 Å, adjacent strands can only be 
clearly separated at ~4.5 Å.

(https://en.wikipedia.org/wiki/Beta_sheet)



EM-specific considerations

• No unambiguous sequence markers at low resolution (no equivalent 
of SeMet).

• No feedback from phase improvement, but also no model bias –
WYSIWIG.

• Often substantial variation in local resolution – different strategies 
and levels of detail required for different regions. Map sharpening 
essential.

• ”Medium” resolution (4-6Å) much more common than for 
crystallography.

• Often have more than one map, with different composition or 
conformation (combine focused refinements in Chimera by taking 
max value at each voxel after alignment, e.g.: vop maximum #1,2 
ongrid #1 )



Building an initial model - where to start?

• If you have a crystal structure, of a fragment or a homology model of a 
domain, place it, and extend into density.

• If you have sufficient resolution, try autobuilding with phenix

• Otherwise, identify structurally distinctive motifs in the sequence – for 
example, a strongly predicted helix with three aromatic residues near the 
N-term end – and identify candidate locations in the density map. Extend 
and see if hypothesis still holds.



Using UCSF Chimera to fit solved domains

Start with map and model. 



Using UCSF Chimera to fit solved domains

Move model to approximate position (if known, to save computation)



Using UCSF Chimera to fit solved domains

Run fitmap with ‘search’ (here 100 orientations) and ’radius’ (here 5 Å)



Using UCSF Chimera to fit solved domains

Chimera will return a list of candidate orientations, ranked by agreement with the map. 
Hopefully there will be a clear separation between the correct and incorrect solutions.



Using UCSF Chimera to fit solved domains

Chimera will return a list of candidate orientations, ranked by agreement with the map. 
Hopefully there will be a clear separation between the correct and incorrect solutions.



Using UCSF Chimera for voxel size calibration (of your map 
and others)

• Voxel size generally requires calibration against 
a crystal structure.

• Once calibrated, generally stable between 
samples/datasets at same magnification.

• Can calibrate by fitting in Chimera at range of 
nominal voxel sizes and measuring correlation.

• Incorrect voxel sizes are common in deposited 
maps - be aware of this when comparing 
structures. E.g. here there is a 3% difference –
affects structural alignment, reported 
resolution (3.8 vs 3.9Å).

Nominal voxel size (Å)
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1.34 Å (original)
1.38 Å (corrected)



COOT – Crystallographic Object Oriented Toolkit

• Simple, intuitive interface for 
building and manipulating 
atomic models in density maps.

• Low computational 
requirements

• Extensive API – easy to script or 
modify (using simple Python 
code)

• On-the-fly sharpening and low 
pass filtering (for MTZ).

(Try the latest nightly with new features for EM, improved RSR: http://www.ccpem.ac.uk/download.php)
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COOT – Crystallographic Object Oriented Toolkit
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placement

• Place cursor at the center of the 
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here” (I suggest via a key 
binding - “h” with coot-
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length and direction of the 
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• Trim/extend, adjust weights, 
then refine using real-space 
refine zone. Drag into density to 
adjust fit.
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COOT – Crystallographic Object Oriented Toolkit

• Sequence assignment.

• Adjust numbering to match 
expected position in sequence.

• Mutate to match sequence

• Fill sidechains manually.

• Adjust sequence register to 
optimize local fit to sidechain 
densities.

Use ’Add Terminal residue’ to extend chain.



Types of errors in macromolecular models 

• Identity (e.g. wrong domain)

• Directionality

• Topology/connectivity

• Register

• Rotamer

• Backbone torsion

• Ligand identification and placement
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Strategy for identifying and correcting errors.

• Analyse as you go – “sanity checks” on chemistry, nonbonded interactions, surface composition. 
Use Molprobity for clashes, Chimera or pymol to check e.g. for buried polars, exposed 
hydrophobics. Monitor agreement with secondary structure, disorder predictions.

• Use EM-ringer to identify errors in backbone and rotamer geometry.

• Look at everything! Manually check and recheck the fit of every residue in Coot. Tedious but 
necessary.

• Sometimes, you just can’t tell the right answer. Don’t be afraid to specify sequence ambiguity (use 
UNKs).

• Half-map FSCs are only really useful to analyse overfitting – they tell you nothing about the local 
quality or correctness of the model.



Model building in EM – RyR1 as an example

• Starting information:

• Crystal structure of first 500aas

• Homology models for four domains (SPRY1-3, 
RY12, RY34);

• TM fold apparent from density

• Allowed building of polyalanine trace 
including known and unknown domains

• Fortuitous 3D class with disordered protomer 
allowed determination of protomer 
boundaries
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Our initial model allowed location of all 
previously predicted domains, and several new 
ones.
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Improved resolution allows building of a near-complete atomic 
model. Refined using phenix.real_space_refine



Low local resolution in periphery prevents model 
completion.

Residues 1250-1650, 2500-3640 still poly-ala – no 
sequence assignment. 



Is lower local resolution in periphery due to unresolved 
movement of shell?



Solution - focused refinement of the shell region of a 
single protomer in a symmetry-expanded set of particles.

Masked refinement in C1 with local angular 
searches greatly improves local resolution.

Symmetry expansion superposes equiv
protomers.
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Thanks for listening!


