Cryo Applications & Sub-tomogram Processing

SEMC Winter EM Course 2019

2-11-19

Alex Noble anoble@nysbc.org

National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center New York Structural Biology Center

Overview – Why CryoET?

Why cryo?

• Specimen preservation in native or near-native environments.

Why electrons?

- +Small wavelengths (high res), +Can be focused, –Damage sample
 Why tomography?
- Some combination of:

○Sample is unique; e.g. cells,

 Sample is too heterogeneous (structurally or morphologically);
 e.g. viruses with variable # of receptors, or viruses of different nonsymmetric shapes,

Domain-stoichiometry and/or orientation is required,

Sub-nanometer information may not be required, but may be possible.

Overview – Why subtomogram averaging?

- Some amount of structural repetition,
- Repeating subunit preferred orientation overcome by tilt range

reconstruction

Courtesy of Misha Kudyashev

- CryoET limitations
- Tilt-series collection
- Tilt-series alignment
- Defocus estimation and CTF correction
- Sub-tomogram localization
- Sub-tomogram alignment and averaging
- Examples
- Processing limitations
- Future directions and improvements

Overview – Limitations: Sample/Ice Thickness

Limitation: Specimen/Ice thickness

• At 300keV in a TEM (e.g. Krios), electrons cannot penetrate more than 0.5-1 μm

Overview – Limitations: Sample/Ice Thickness

Limitation: Specimen/Ice thickness

• At 300keV in a TEM (e.g. Krios), electrons cannot penetrate more than 0.5-1 μm

Overview – Limitations: Electron Damage

Limitation: Electron damage of the specimen

• High voltage electrons damage biological specimen. This is **sample dependent**!

Overview – Limitations: Electron Damage

Limitation: Electron damage of the specimen

- High voltage electrons damage biological specimen.
 - High resolution information is lost first followed by lower resolution info.

Solution:

Remove damaged information from image frames

Overview – Limitations: Electron Damage

Limitation: Electron damage of the specimen

• Solution: Remove damaged information from image frames (single particle) or tilt images (tomography):

Overview – Limitations: Electron Damage?

But be careful! There might be more information than you think:

Supplementary Figure 3 | **Resolution of individual frame reconstructions**. (a) Using the best Euler angles and shifts, reconstructions were computed separately for each of the 70 frames. The resulting resolution shows two trends: the first 4 frames (3.17-2.43 Å) suffered from the initial effects of beam-induced motion; after frame 22, the resolution gradually worsens owing to the cumulative effects of radiation damage. (b) Frame-to-frame shifts in Ångstroms for all 70 frames are shown in blue. Frame-to-frame shifts were calculated using MotionCor2 global frame alignment mode.

Overview – Limitations: Camera Fidelity

Limitation: Camera fidelity at localizing electrons

• Cameras do not transfer information perfectly or equally across frequencies.

Tomography overview

ET/CryoET collection and processing overview

ET/CryoET collection and processing overview

Grid tilting increases thickness

grid tilted 60° = 2x thickness

Reconstruction Implies Interpolation

- Tomographic reconstruction on a 3D grid requires interpolation
- Larger tilt increment = more missing information at higher tilt angles

Thickness increase from tilting limits tilting

- Phase plate tilt-series of T20S Proteasome
- Tilt axis is horizontal

Grid tilting limit results in missing information

Phase plate tilt-series of T20S Proteasome Tilt axis is **vertical**

Noble, 2017

Tilt-series collection software

Leginon

TOM Toolbox

EPU

UCSF Tomography

SerialEM

Tilt-series tracking

- Problem: You cannot trust the goniometer to move where you tell it
- Problem: You cannot use the area of interest to refine your tracking because you will over-expose your sample
- **Problem:** You need to refine x, y, and usually z to within 10-100 nm for a high-mag tilt-series collection.
- Solution 1: Predictive tracking Use previous tilt images, previous tilt-series, and possibly known goniometer instabilities.
- Solution 2: Focus position method Identify one or two locations along the tilt axis the software will go to re-focus and re-track.

Automated tilt-series collection

Automated tilt-series collection is currently routine

- From an atlas, select multiple squares, and from each square select holes,
- For each hole place an exposure target along with one or more focus targets,
- Set up dose, defocus range, tilt model, etc. appropriately,

• Collect!

Automated tilt-series collection

Focus on the tilt axis!

- You want to minimize the amount of tracking error
 - Tilting should not change the x,y,z target location
- This is called getting eucentric height.

Tilt-series alignment

- Software:
 - ETomo in IMOD Fiducial-based alignment (also patch tracking)
 - Markerauto and AuTom Automated **fiducial-based** alignment
 - Protomo Fiducial-less alignment
 - Alignator Patch tracking alignment, GPU-accelerated
 - EMAN2 Object tracking
- Must refine most or all of the following:
 - Tilt image shifts, rotations, and magnification changes (scaling)
 - Tilt axis location
 - Tilt angles

Fiducial-based tilt-series alignment

- Requires a sufficient number of wellbehaved gold beads
- Semi-automated (IMOD, Dynamo) or automated
 (AuTom/markerauto, IMOD) processing

http://bio3d.colorado.edu

Fiducial-based tilt-series alignment issues

Fiducial Movement

Anisotropic Bead Motion

Bead Aggregation

DE-20 @ 18kx; 51°, 2.34 e⁻/Å² after a cumulative dose of 60 e⁻/Å² DE-20; 57.5 e⁻/Å², 0° exposure

Noble & Stagg, JSB 2015

Fiducial-based tilt-series alignment issues

Nearby Fiducials Affect Signal and Contrast

 Fiducial fringes change the power spectrum of your reconstructed object.

Fiducial-based tilt-series alignment issues

Fiducials are Present in Much of the Reconstruction, *Even if You Can't See Them!*

- Distant fiducials can be in the projection direction of your extracted object of interest.
- Erasing fiducials isn't perfect.

Patch tracking tilt-series alignment

Identify featureful objects with contrast in all tilt images and track them.

 Semi-automated (IMOD, Alignator)

Nearest-neighbor correlation Weighted back-projection $alignment_{thickness} = z \int_{x}^{y} Volume to be re-projected$

Refine orientations of objects

Refine tilt azimuth

Appion-Protomo refinement

Iterate with different filters

Appion-Protomo refinement

Why is this important?

Appion-Protomo refinement

Why is this important?

Nearest-neighbor alignment

Frame: 1/56

After refinement

Frame: 1/56

After refinement

250 nm Tilt Image: 1/56 -53.99 deg 250 nm Z-Slice: 1/108 bin=8, lp=29.4, thick=800

Protomo alignment of thick specimen has one potential issue

Systematic misalignment of images can stretch objects. *This is fixable!*

Defocus estimation

Goal: Find the **height of your objects** of interest to correct for microscope aberrations (CTF)

Problem: Low per-image SNR and potential poor tracking

3 $e^{-}/Å^2$ single particle tilt image

Defocus estimation methods

Methods ordered approximately **worst-to-best** (depends on sample):

- **Per-image** defocus estimation accounting for tilts (CTFFIND4, GCTF, etc.)
- Per-tomogram post-hoc estimation by using SPT FSC to locate the first CTF zero
- Image tiling to estimate the defocus of the untilted plane (TomoCTF)
- Defocus estimation and interpolation using two focus locations on the tilt axis (Eibauer, 2012)
- Per-particle tilt image fine estimation and correction that accounts for the 3D location of each particle
- Per-particle tilt image fine estimation and correction that takes into account overlapping objects in each tilt image of each particle and accounts for the 3D location of each particle – can use all particles in each tilt image to refine!

CTF correction methods

Methods ordered approximately **worst-to-best** (depends on sample):

- Per-image correction
- Strip-based correction with TomoCTF or IMOD ctfphaseflip
 - Flips phases and optionally corrects amplitudes (TomoCTF) on a strip-by-strip basis.
 - Error will depend on the amount of non-eucentricity
- 3D CTF model (Relion) takes into account x,y,z particle locations
- Per-particle/tiling CTF correction (EMAN2)
- During tomographic reconstruction (EmSART, NovaCTF)
- Per-particle tilt image refinement (emClarity)

Missing wedge must be taken into account for each sub-tomogram

Must take into account subtomogram missing wedges

• Effectively align volume in common in Fourier space

Sub-tomogram processing software

- Dynamo GPU accelerated, tomogram database, extensive picking abilities
- Relion 3D CTF model, Bayesian approach to alignment is used
- EMAN2 Sub-tilt-series refinement and defocus estimation/correction
- emClarity Sub-tilt-series refinement and defocus estimation/correction
- TYGRESS Intended for use w/ high dose 0 degree image (Nicastro group)
- PyTom
- PEET
- Jsubtomo

XMIPP

• TOM & AV3

- Uses normal Relion workflow.
- Potential issues:
 - Extra images are likely not at the same focus as the Target
 - 3D FSC may eliminate properly interpolated values due to sampling

weighted CTF model Bharat et. al., Structure 2015

• 6e-/A² pre-exposures prior to tilt-series

collected were collected and analyzed with

single particle

Sub-tomogram processing in EMAN2

Galaz-Montoya, JSB 2016

Sub-tomogram processing in EMAN2

• Better than 2/3 Nyquist

Tomogram/sub-tomogram annotation and segmentation software

- Dynamo Annotate membranes, tubes, helices, crystal structures, vesicles, etc.
- EMAN2 Shallow learning neural network
- Amira Interactive segmentation and filtering suite
- UCSF Chimera w/ Segger Interactive segmentation
- Template picking MolMatch, Dynamo

Sub-tomogram annotation processing in Dynamo

- Backbone, helical, and circumferential picking
- Helical symmetry

determination

Sub-tomogram annotation processing in Dynamo

Castaño-Díez et. al., JSB 2012 & 2016

Sub-tomogram annotation processing in Dynamo

Castaño-Díez et. al., JSB 2012 & 2016

Sub-tomogram segmentation with CNNs in EMAN2

Sub-tomogram segmentation with CNNs in EMAN2

Template matching

Example: STA followed by placing averages to the tomograms

COP-I coated vesicles From: Faini et al, Science, 2012

Example: Mason-Pfizer monkey virus Gag protein

Over-picking to find repeating units

Schur et al, J. Struct Biol, 2013 Schur et al, Nature, 2015

Example: Liposomes and VLPs

Example: Actin Filaments

Pinar Gural, Greg Alushin, Alex Noble unpublished

HIV-1 trimer single particle

SC

Priyamvada Acharya & Alex Noble eLife, 2018

Example: Exotically Shaped Samples

Mykhailo Kopylov & Beth Stroupe unpublished

Example: Tomography for single particle initial model

- 5 tomograms were collected
- ~1,000 particles picked, aligned, and classified
- Classes used as templates for picking single particle micrographs
- Single particle now at 4 angstroms without anisotropy.

eLife, 2018 (tomography) and eLife, 2018 (biology)

Example: Tomography of clustered protocadherins on membranes

Example: Tomography of clustered protocadherins on membranes

Example: Tomography of clustered protocadherins on membranes

Example: Lassa virus glycoprotein spike

- Heterogeneous shape makes single particle difficult/impossible
- Sub-tomogram processing on spiked allows for 13.6 Å spike structure
- Can re-map spikes onto all particles in the tomogram

Example: Bacterial flagella motor and type III secretion injectisome

Kudryashev et al, JSB, 2010 and Castaño-Díez, et al, JSB, 2012

Kudryashev et al, eLife, 2013

- Conformational states studied in situ
- Presence and absence of C-ring
- Elongation of injectisome

Example: HIV-1 Capsid-SP1 at 3.9/3.4/3.2 Å

- Krios + Super-res K2 + Gatan Energy Filter
- Fiducial tilt-series alignment
- 1.5 5 micron defocus
- Strip-based CTF correction
- ~750,000 sub-particles used
- TOM, AV3, Dynamo, and in-house scripts were used
- NovaCTF 3D CTF pushed it to 3.4 Å
- emClarity pushed to 3.2 Å
- Warp pushed it to the same?

Schur, 2016 Turoňová, 2017

Example: HIV-1 Capsid-SP1 at 3.9/3.4/3.2 Å

An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation Schur F.K.M, Obr M., Hagen W.J.H, Wan W., Jakobi A.J., Kirkpatrick J.M., Sachse C., Kräusslich H-G., Briggs J.A.G

Example: HIV-1 Capsid-SP1 at 3.9/3.4/3.2 Å

Sample		HIV-1 ΔMACANCSP2 VLPs	HIV-1 ΔMACANCSP2 VLPs + 100 μg/ml Bevirimat	Immature HIV-1 (D25A) virus	
Acquisition settings	Microscope	FEI Titan Krios	FEI Titan Krios	FEI Titan Krios 300	
	Voltage (keV)	300	300		
	Detector	Gatan Quantum K2 Gatan Quantum K2		Gatan Quantum K2	
	Energy-filter	Yes	Yes	Yes	
	Slit width (eV)	20	20	20	
	Super-resolution mode	Yes	Yes	Yes	
	Å/pixel	1.35	1.35	1.35	
	Defocus range (microns)	-1.5 to -4.5	-1.5 to -5.0	-1.5 to 5.0	
	Defocus step (microns)	0.25	0.25	0.25	
	Acquisition scheme	-60/60°, 3°, Serial EM	-60/60°, 3°, Serial EM	-60/60°, 3°, Serial EM	
	Total Dose (electrons/Å ²)	~90 - 270	~120 - 145	~120-221	
	Dose rate (electrons/Å ² /sec)	~3 - 8	~3 - 3.8	~1.5 – 5.5	
	Frame number	6 – 10	8 – 10	10 – 12	
	Tomogram number	93	43	74	
Processing settings	VLPs/Viruses	285	383	484	
	Asymmetric units Set A	265,506	386,040	301,302	
	Asymmetric units Set B	263,910	386,598	301,920	
	Final resolution (0.143 FSC) in Å	4.5	3.9	4.2	

Schur et. al., Science 2016

Nanometer SPT studies (~1 year old)

Sample	Sample type	Instrumentation	Tilt-series alignment method	Defocus range (µm)	CTF correction method	Number of asymmetric units	Reported resolution (Å), Nyquist fraction	Citation
HIV-1 capsid-SP1	VLP spikes	Titan Krios, K2 Summit @ 8kx8k, GIF	fiducial	1.5 – 5	Strip-based/3D CTF	~750,000	3.9, 0.35 3.4	(Schur et al., 2016) (Turoňová, 2017)
Rous-Sarcoma Virus Gag particles	Isolated viruses	Titan Krios, 2k CCD, GIF	fiducial	1.5 – 5	Strip-based	50,000	7.7, 0.27	(Schur et al., 2015)
Hepatitis B capsid	Isolated viruses	Titan Krios, K2 Summit, GIF	fiducial	3.2 – 5.6	Per-particle 3D CTF model	68,000	8.1, 0.53	(Bharat et al. <i>,</i> 2015)
M-PMV CANC Gag dimer	Lattice- decorated tubes	Titan Krios, 2k CCD, GIF	fiducial	1.5 – 3.3	Tile-based	121,000	8.3, 0.49	(Schur et al., 2013)
GroEL	Isolated particles	Titan Krios, 4k CCD	fiducial	2 – 3	Per-particle, each projection	10,000	8.4, 0.41	(Bartesaghi et al., 2012)*
HIV-1	Isolated viruses	Titan Krios, 2k CCD, GIF	fiducial	1.2 – 4	Strip-based	195,000	8.8, 0.46	(Schur et al., 2014)
Sec61 protein- conducting channel	Isolated vesicles	Titan Krios, K2 Summit, GIF	fiducial	3 – 4	Strip-based	17,600	9, 0.58	(Pfeffer et al., 2015)
M-PMV Gag-derived protein	Isolated viruses	Titan Krios, 2k CCD, GIF	fiducial	1.4 – 4.5	Strip-based	77,500	9.7, 0.41	(Schur et al., 2014)
HIV-1	Isolated viruses	Titan Krios, Falcon II	fiducial	2 – 5.5	Strip-based	63,000	10.9, 0.42	(Schur et al., 2014)
Histidine Kinase CheA	Latticed proteins	Tecnai Polara, 4k CCD	correlation	5 – 8	Strip-based	4,000	11.3, 0.53	(Cassidy et al., 2015)
Mouse Serotonin Receptor	Isolated viruses	Titan Krios, K2 Summit	fiducial	2.5 – 4	Strip-based	65,000	12, 0.28	(Kudryashev et al., 2016)
VEEV	Isolated viruses	JEM3200FSC, DE-20, GIF	fiducial	4 – 8	Per-particle sub-tilt- series	21,000	13, 0.77	(Galaz-Montoya et al., 2016)

Processing/Resolution limits

Already discussed: Sample thickness, camera accuracy, and specimen damage

- Pixelsize (highest resolution = 2 x pixelsize = Nyquist)
- Isotropic motion (monitor your **drift** before full collection)
- Inherent specimen flexibility
- Ice warping in 3D during collection (doming)
- Beam-induced motion of objects of interest in 3D (particularly anisotropic)

Problem: Objects and ice move non-uniformly!

0 e-/A² – 20 e-/A² Wim Hagen, ^{The esteemed} journal of Twitter

Refining tilt-series alignment by tracking beads in 3D

Fernandez, 2018

Refining tilt-series alignment by tracking beads in 3D

Refining tilt-series alignment by tracking just particles

Himes, 2017

Refining tilt-series alignment by tracking just particles

Interpolate vector field from particle refinements to refine all objects

Future hardware improvements in the field – 3D cryo-CLEM

Future hardware improvements in the field – Rapid tilting

Chreifi, JSB, 2019

Thank you! Questions?

Alex Noble anoble@nysbc.org

National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center New York Structural Biology Center

