

Basic anatomy of an electron microscope

SEMC Winter EM Course

January 13th, 2020

Overview

Why Electrons?

Pros

Small wavelength

Can be focused

Damages sample worse with faster electrons

Poor penetration better with faster electrons

They're the worst option, except for everything else

Concept check : electron guns

- What are the 3 main kinds of electron guns? What are the advantages and disadvantages of each?
- What is the difference between spatial coherence and temporal coherence?
- What is the "high tension"?
- How fast are the electrons moving at our usual voltage range?

Typical Voltages & Configurations

• 80 - 120 keV

- E.g. Joel J1230, Tecnai T12
- Tungsten or LaB₆, CCD or CMOS non-DD
- High contrast, robust, fast
- Screening room temp or cryo samples

Typical Voltages & Configurations

• 200 keV

- E.g. Tecnai F20, Talos, Arctica, Glacios
- FEG, direct detector or non-direct detector
- Versatile screening or high resolution (sub-3Å)
 - Usually cryo

Typical Voltages & Configurations

• 300 keV

- E.g. FEI Polara, Titan Krios
- FEG, Direct detector, energy filter, etc.
- Highest resolution (sub-2Å)
- Hopefully no screening

- What are the three main lens systems in an electron microscope?
- What are the special names given to the three independent sets of deflectors?
- What is "hysteresis"?
- What is a "crossover"?

Electron Lenses

- Focus
- Magnify
- Rotate

(Charge Coupled Device)

(Complementary Metal Oxide Semiconductor)

CMOS

Detectors

From Anchi Cheng

Photon Converted

Direct Sensing

Detector Quantum Efficiency

Hybrid Pixel Array Detectors

- The next detector for cryo-TEM?
- Now used regularly in x-ray diffraction

• Used in Gruene 2018, Angewandte Chemie & Peet 2019, Ultramicroscopy

Pros : Great DQE, 10 kHz frame rate

<u>Cons</u>: Large (75 μ m pixel vs 5 μ m), Small viewing area – 1030 x 514

https://www.dectris.com/technology/hybrid-photon-counting/direct-detection

Hybrid Pixel Array Detectors

103dectris.com/company/news/newsroom/success-story-details/electrons-are-the-new-photons

Practicals & Journal Club

- Tomorrow's practical : meet here at 3:30 for our microscope anatomy practical
- Journal clubs : for-credit students will present.

Comparison of original and modern plunge freezing techniques (Adrian et al. 1984 & Razinknov et al. 2016)

Marriah Green, Ruby Froom

<u>Feb 5</u>

The best voltage for EM (Peet et al. 2019 & Naydenova et al. 2019)

Bryce Delgado, Evan Seitz, Ayat Yaseen

<u>Feb 12</u>

Beginning of the Resolution Revolution (Liao et al. 2013)

Zhengshan Hu, Vinay Kumar Sapuru

<u>Feb 19</u>

HIV trimer controversy and Einstein from noise (Mao et al. 2013 & Henderson 2013 & van Heel 2013)

Rafal Piwowarczky, Pedro Gutierrez, Natalie McArthur