

Fourier Transforms and Image Formation

SEMC Winter EM Course

January 27th, 2020

Overview

- Review of Fourier Transforms
- Electron scattering
- Amplitude and phase contrast
- Contrast Transfer Function (CTF)
- CTF estimation & correction
- Examples in EM

1D Fourier Transforms

1D Fourier Transforms – Reciprocal space

2D Fourier Transforms – reciprocal space

Fourier Transforms – Nyquist frequency

Nyquist frequency = 2 x Pixel Size [Å]

Image formation - scattering

Amplitude Contrast

<u>Amplitude contrast</u> = difference between sample & background due to lost electrons*

Most electrons are unscattered

Very low amplitude contrast

*Oversimplification. Electrons are more accurately understood as waves

Phase Contrast

High angle scattering = high resolution info

Moderate angle scattering = moderate resolution info

Low angle scattering contains low spatial frequency Fourier components – this is information about the general shape and spacing of the molecules

Phase shift and interference

Unscattered wave is high amplitude

Scattered waves are low amplitude

Some will be completely lost! (if they have a 90° phase shift relative to the

Phase shift comes from scattering (90°) and from the extra distance traveled thanks to scattering

Contrast Transfer Function (CTF)

Contrast Transfer Function (CTF)

$$CTF(\mathbf{v}) = \sin\left[\frac{2\pi}{\lambda}\left(\frac{\mathbf{Cs}\cdot\lambda^{4}\cdot\mathbf{v}^{4}}{4} - \frac{\mathbf{\Delta f}\cdot\lambda^{2}\cdot\mathbf{v}^{2}}{2}\right)\right]$$

- ν: Spatial frequency
- *Cs*: Spherical aberration coefficient
- λ : Electron wavelength

 Δf : Defocus

Envelopes – Temporal coherence

Many other factors (imperfect detectors, defocus itself, etc.) also attenuate high spatial frequencies

Defocus and its effects

Cheng et al., Cell 2015

Defocus and its effects

Tan et al., Journal of Electron Microscopy 2015

Defocus is not always the same in X and Y

Tan et al., Journal of Electron Microscopy 2015

Nobel et al., Journal of Electron Microscopy 2015

Why defocused?

$$CTF(\nu) = \sin\left[\frac{2\pi}{\lambda}\left(\frac{Cs\cdot\lambda^4\cdot\nu^4}{4} - \frac{\Delta f\cdot\lambda^2\cdot\nu^2}{2}\right)\right]$$

Fan et al., Structure 2017

Collect a range of defocus values to fill in zeros

Willy Wriggers, Image Formation in the Electron Microscope

 $I = O \otimes PSF \qquad FT\{PSF\} = CTF$

 $FT\{I\} = FT\{O \otimes PSF\}$

 $FT\{I\} = FT\{O\} \ x \ CTF$ $ET\{I\}$

$$FT\{O\} = \frac{TT\{T\}}{CTF}$$

$$O = FT^{-1} \left\{ \frac{FT\{I\}}{CTF} \right\}$$

Can't divide by zero! Those spatial frequencies are lost

CTF Correction

Object	CTF	FT(I)	CTF-Corrected
10	-0.2	-2	-2 / -0.2 = 10
5	0.3	1.5	1.5 / 0.3 = 5
2	-0.3	-0.6	-0.6 / -0.3 = 2

Information is delocalized thanks to PSF

Clipping the PSF (cropping your particles too tight in real space) removes CTF information! At 300 keV & 1.5 μm defocus, a 1Å pixel spreads over 256x256 pixels Delocalization increases with defocus – box size should take defocus into account Rule of thumb : max_defocus[Å] = 25 * box_size[Å] * resolution[Å]

Any questions?

Twitter @RadoDanev

@Marin_van_Heel