

The Winter-Spring 2022 EM Course

Introduction to Cryo-electron Tomography

Wei Dai

Department of Cell Biology and Neuroscience

Institute for Quantitative Biomedicine

Rutgers University

February 14, 2022

The New York Times

Resolving Structures to Drive Scientific Discoveries during the Pandemic

The Coronavirus Unveiled

By Carl Zimmer, Oct. 9, 2020

How does SARS-CoV-2 enter human cells? Wrapp D. *et al.*, Science 2020; Simulation by Amaro lab, UCSD

Structures Resolved by Tomography in EMDB

EMDB current entry modality distribution

As of Feb. 4, 2022

Outline

- What is cryo-electron tomography?
- Sample preparation: special considerations
- Data collection, alignment, and reconstruction
- Application of cryo-electron tomography in cell biology (structural cell biology)

Cryo-EM Single Particle Analysis

The Nobel Prize in Chemistry 2017

Jacques Dubochet Prize share: 1/3

Elmehed

Joachim Frank

Prize share: 1/3

Rabed defa. II. N.

© Nobel Media. III. N. Elmehed Richard Henderson Prize share: 1/3

O Using thousands of **J** similar traces, the computer generates a high-resolution 2D image The computer 4 calculates how the different 2D images relate to each other and generates a high-resolution structure in 3D.

Cryo-electron tomography (Cryo-ET)

On a TEM: 3D structures \rightarrow 2D images

Baumeister W. 1999 Trends in Cell Bio.

On a computer: 2D images \rightarrow 3D structures

Why Cryo-electron Tomography (Cryo-ET)?

- Sample has a unique structure or heterogenous
- Sample in a complex environment

Sample Preparation

- Preserving various structural elements of the specimen in native structure in aqueous solution
- Good concentration
- Good thickness & good contrast
- Target tracking in their native environment

Plunge Freezing

To vitrify water:

- Temperature drop > 10^5 - 10^6 K/s \rightarrow liquid ethane
 - Liquid N₂ has poor cooling capacity
 - Water is a poor thermal conductor so sample thickness < 5 μm
- Gravity plunge at > 1 m/s

Specimen Preserved by Plunge Freezing

R. F. Thompson, et al., 2016 Methods, Vol. 100, 3-15

Preparing Intact Mammalian Cells For Cellular Tomography

CryoET Data Collection

What is a "tilt-series"?

- Images taken when the sample is tilting about the tilt axis.

Tilt series of *C. glabrata* plasma membranes

CryoET Data Collection

- There are many configuration parameters involved in data collection. Each is a balance between opposing considerations.
 - Defocus: contrast vs resolution
 - Total dose: signal vs radiation damage
 - Tilt range and increment:
 - goniometer mechanical limit (-70 <->+70)
 - goal of the project
 - sample geometry

Data alignment and reconstruction

- Each image in a tilt series has to be "aligned"
 - x, y shift

JTGERS

- Rotation (position of tilt axis)
- Tilt angle
- defocus

Data alignment and reconstruction

- Each image in a tilt series has to be "aligned"
 - x, y shift

ITGERS

- Rotation (position of tilt axis)
- Tilt angle
- defocus

Data alignment and reconstruction

Data visualization, analysis and subtomogram averaging

Outline

- What is cryo-electron tomography?
- Sample preparation: special considerations
- Data collection, alignment, and reconstruction
- Application of cryo-electron tomography in cell biology (structural cell biology)

Cellular Tomography:

- Cytoplasm: too thick for electrons to penetrate;
- How to find targets within a crowded cell?

Applying Cryo-ET to Reveal Protein Structure *in situ* – The Workflow

CelPress

Cell

Article

The In Situ Structure of Parkinson's Disease-Linked LRRK2

Reika Watanabe,^{1,6,7} Robert Buschauer,^{1,6,8} Jan Böhning,^{1,9,6} Martina Audagnotto,^{1,10} Keren Lasker,² Tsan-Wen Lu,³ Daniela Boassa,⁴ Susan Taylor,^{3,5} and Elizabeth Villa^{1,11,*}

Structure of LRRK2

- LRRK2: (Leucine-rich repeat kinase 2) the most mutated gene in familial Parkinson's disease
- Functions in neurite outgrowth, membrane trafficking, autophagy
- Mutations or pharmacological inhibition of kinase activity recruit LRRK2 to microtubules
- Multi-domain protein; structure of the full-length protein is not available.

Guaitoli, G. et al., PNAS 2016

Workflow

Watanabe, R. et al., Cell 2020

27

Step 1: Design and Prepare Cells to Allow Detection of Targets in the Crowded Environment

- Add fluorescence tag; Increasing abundance for easy detection
- Correlative Light and Electron Microscopy (CLEM)

Step 2: Focused Ion Beam Milling to Generate Thin Cell Lamella for Cryo-ET

- Cells on grids: 1 5 μ m
- Electron penetration power: 100–300 nm

<u>Gallium ion milling capability</u> 20 nm milling precision Fine milling (<1pA) to preserve specimen and high-current (>100nA) for large areas SEM column ~1nm resolution Beam deceleration

<u>Cryostage/cryotransfer</u> Accommodates autogrid cartridges for integration with cryoCLEM & cryoTEM Stable operation below the devitrification point of water Approaches liquid nitrogen temperature

Airlock for loading/unloading under cryo-conditions

<u>Detectors</u> Secondary electron Back-scattered electron incl. in-lens detectors

Focused Ion Beam

Rigort and Plitzko, 2015 Arch Biochem Biophys. 581: 122-130

Step 2: Focused Ion Beam Milling to Generate Thin Cell Lamella for Cryo-ET

- Cells on grids: $1 5 \,\mu m$
- Lamella: 100–150 nm

Step 3: Cryo-ET Imaging and Tomogram Reconstruction

• Use CLEM to guide tilt series data collection

Watanabe, R. et al., Cell 2020

Step 4: In situ Structure Analysis

• Distribution and dynamics in cells

Step 5: Subtomogram Analysis

- Extraction
- Classification
- Averaging
- Model fitting

RUTGERS

Step 6: Integrative Modeling

 Details in domain organization can be deduced from nanometer resolution maps

Watanabe, R. et al., Cell 2020

Step 7: Functional Analysis

Disturbing structure

Variations of functions

Summary

- Introduction to cryo-electron tomography, correlative light and electron microscopy and focused ion beam milling
- Sample preparation for cryo-electron tomography
- Structures and distribution of protein complexes or aggregates in neurodegenerative diseases by multimodal bioimaging combining CLEM, cryoFIB and cryoET.

References

1. Wrapp, D. *et al.* Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. *Science* **367**, 1260-1263, doi:10.1126/science.abb2507 (2020).

2. Yao, H. *et al.* Molecular Architecture of the SARS-CoV-2 Virus. *Cell* **183**, 730-738 e713, doi:10.1016/j.cell.2020.09.018 (2020).

3. Klein, S. *et al.* SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. *Nat Commun* **11**, 5885, doi:10.1038/s41467-020-19619-7 (2020).

4. Deniston, C. K. *et al.* Structure of LRRK2 in Parkinson's disease and model for microtubule interaction. *Nature* **588**, 344-349, doi:10.1038/s41586-020-2673-2 (2020).

5. Watanabe, R. *et al.* The In Situ Structure of Parkinson's Disease-Linked LRRK2. *Cell* **182**, 1508-1518 e1516, doi:10.1016/j.cell.2020.08.004 (2020).

6. Jiménez-Ortigosa C., Jiang J., Chen M., Kuang, X., Healey K. R., Castellano P., Boparai N., Ludtke S. J., Perlin D. S., and Dai W. (2021), Preliminary structural elucidation of β -(1,3)-glucan synthase from candida glabrata using cryo-electron tomography. *JOF* 7 (2), 120.

Concept Checking Questions

- Single particle vs Tomography
- Data collection configurations
- The missing wedge artifact
- Factors limiting the resolution of subtomogram averages
- Identifying objects in information-rich tomograms
- Factors affecting correlation in CLEM

Single Particle *or* Tomography

41 https://clipart-library.com

CryoET Data Collection

- There are many configuration parameters involved in data collection. Each is a balance between opposing considerations.
 - Defocus: contrast vs resolution
 - Total dose: signal vs radiation damage
 - Tilt range and increment:
 - goniometer mechanical limit (-70 <->+70)
 - goal of the project
 - sample geometry

• "Crowther criterion":

radius (Å)	res (Å)	# views	angular step (°)
125	3	259	0.69
125	10	79	2.292
125	40	20	9.167
10000	3	20944	0.009
10000	10	6283	0.029
10000	40	1571	0.115

Courtesy of Jason Kaelber

• The Missing Wedge Artifact

Data alignment and reconstruction

- What is the "missing wedge"?
 - Missing data that are not recorded because of limited tilt range

Dual tilt reduces missing wedge

A holder that "flips" in the microscope so x-tilt will image a second axis

https://www.wormatlas.org/EMmethods/ETmethods.htm

Dual tilt reduces missing wedge

UTGERS

lancu, Wright &al. JSB 2005

What are the factors limiting the resolution of subtomogram averages?

Identifying objects in tomograms

- Structure signature
- CLEM

TGERS

- Perturbing abundance or structure
- Template matching
- Heavy metal tag

CLEM:

- What are the advantages and disadvantages of doing light microscopy at room temperature and cryotemperature?
 - Room temperature: oil immersion objective lens, large NA
 - Cryo temperature: samples stop moving

CLEM: many factors affect correlation

GFP RT 100x NA1.4 oil immersion objective lens

GFP 80K 60x NA 0.7 air objective lens

PA-GFP 80K cryo-PALM

Distance between EM/cryo-PALM bead centers around 9±2 nm

Fluorophore & objective lens

Correlation of images

Tomography - Identifying objects in tomograms concept check questions:

- What is "cryo-PALM"?
- PALM: photoactivated localization microscopy

PALM (Photo Activated Light Microscopy)

In PALM, small bursts of UV light are used to excite subsets of fluorophores. Since these fluorophores are excited in small sets, their diffraction patterns are less likely to overlap, allowing the location of the actual molecules to be located through back calculation

http://huanglab.ucsf.edu/STORM.html