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(Slides demonstrating tomographic reconstruction)
Fourier  
transform

Every image has a 2D Fourier transform
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Image processing with Fourier transforms

 

 

 

 

g(x, y) → G(u, v)

g * h → GH

g(x′ , y′ ) → G(u′ , v′ )

Py g(x, y) → G(u,0)

Fourier Transform 

Convolution 

Rotation 

Projection



Projection Slice

g(x, y) G(u, v)

Pyg
x G(u, 0)

G(u, v) = ∬ g(x, y)e−i2π(ux+vy)dxdy




            

G(u, 0) = ∫ (∫ g(x, y)dy)e−i2π(ux)dx

= ℱ{Pyg}
Pyg(x, y) = ∫ g(x, y)dy

The Fourier Slice Theorem

2D Fourier Transform

Projection along y
Values along the  axisu



Projection Slice

g(x, y) G(u, v)

Pyg
x G(u, 0)

G(u, v) = ∬ g(x, y)e−i2π(ux+vy)dxdy

The rotation property allows us to fill in all of G(u, v)

2D Fourier Transform

G(u) = ∫ ∫ g(x)e−i2π(u⋅x)d2x

FT using 2D vectors

The rotation property says:

If we can collect projections from all directions, we 
can construct all of G(u, v)

Dot-product is invariant under rotations!



FT of a shifted square

Fourier  
transform

Insert as a slice 
in 2D field

Compute the 
1D projection

2D inverse 
Fourier  
transform

Reconstruction using the Fourier Slice Theorem

Pxg(x, y)

G(u,0)

G(u, v)grec(x, y)
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Dealing with the contrast-transfer function

The contrast transfer function is given by 

 CTF = sin(−πλδf2 +
π
2

Csλ3f 4 − α)

α

 effectCs

With  and α Cs



The power spectrum describes the magnitude of Fourier components in an image

Power spectrum  |ℱ{X} |2Image X



Image processing with Fourier transforms
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Modeling the CTF effect on an image

Model of an image


X = CA + N

Can we do the deconvolution 


 ??̂A ≈ X/C

We can interpret C as either the CTF 
operator (x,y space), or just the 

multiplicative CTF factor (u,v space)

     “true” image


     contrast-transfer function


     noise image

A
C
N



Modeling the CTF effect on an image

Model of an image

X = CA + N

A C C × AC

X

W
ie

ne
rT

RP
V2

.m

Can we do the deconvolution 

 ??̂A = X/C



How to undo the CTF effects?

1.  Phase flipping 

̂A = sgn(C)X

ÃA

W
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How to undo the CTF effects in noisy images?
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1.  Phase flipping 

 

2. Wiener filter 

 

̂A = sgn(C)X

̂A =
CX

C2 + k



How to undo the CTF effects in noisy images?

3. Wiener from multiple images 

 ̂A =
∑N

i CiXi

k + ∑N
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How to undo the CTF effects in noisy images?

3. Wiener from multiple images 

 Ã =
∑N

i CiXi

k + ∑N
i C2

i

 k = 1/SNR

=
|N |2

|A |2

3. Wiener from multiple images 

 ̂A =
∑N

i CiXi

kw(s) + ∑N
i C2

i

 

        

kw(s) = 1/SNR

=
∥N∥2

∥A∥2



Image restoration when spectral SNR is known

Restoration 

from multiple images


 ̂A =
∑N

i CiXi

kw(s) + ∑N
i C2

i

TR
PV

3.
m

The defocus varies 
to fill in CTF zeros




Image restoration when spectral SNR is known

Restoration 

from multiple images


 Ã =
∑N

i CiXi

kw(s) + ∑N
i C2

i

TR
PV

3.
m

Even the small defocus range 

1–1.5 µm is sufficient.The defocus varies 

to fill in CTF zeros
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Single-particle reconstruction

We assume that image  comes from a projection 
in direction  of volume  according to




The goal is to discover the volume 

Xi
ϕi V

Xi = CiPϕi
V + Ni

V

Xi

Project along ϕi

V

8,310 

micrographs

Demo Particle Picker

3,007,380 particles

Laplacian-of-Gaussian

Auto-picking

2,565,954 particles

2D classifications

318,401 particles 

selected

2D classifications

600,918 particles 

selected

Combine and repeated particles are removed

905,664 particles

3D classification

13.9% 12.7% 53.5% 9.1%10.8%

3D classification 383,936 particles

8.4% 11.3%25.8%54.6%

3D Refine

C4 Symmetry 

266,495 particles

3.6 Å

CTF Refine

Bayesian polishing

Masked 3D Refine

C4 Symmetry 

266,495 particles
3.0 Å

Sup Figure.1 Cryo-EM data processing work flow of inactivated Kv1.2 (W366F). 



3D reconstruction in FREALIGN—it’s like a Wiener filter

A Frealign iteration, refining  to , consists of two 
steps:


1. Vary the projection direction  to find the projection 
image    that maximizes the correlation 
coefficient for each image ,


              . 


2. Knowing the best projection direction  for each image 
, update the volume according to 


         


V(n) V(n+1)

ϕi
Ri = CiPϕi

V(n)

Xi

CC =
Xi ⋅ Ri

|Xi | |Ri |

ϕi
Xi

V(n+1) =
∑N

i PT
ϕi

CiXi

k + ∑N
i PT

ϕi
C2

i

Notes


1.  is the CTF corresponding to the 
image .


2. The projection operator  also 
includes translations.  So  consists of 
five variables: .


3.  is the corresponding back 
projection operator.  In Fourier space it 
yields a volume that is all zeros except 
for values along a slice.

Ci
Xi

Pϕ
ϕ

ϕ = {α, β, γ, tx, ty}

PT
ϕi



3D reconstruction in FREALIGN—iterations

1.Start with a preliminary structure 


2.For each particle image  find the projection angles  
that gives the best match, so 


3.Use the Frealign iteration to produce a new 3D volume 

V(n), n = 1

Xi ϕi
Xi ≈ CiPϕi

V(n)

V(n+1)

Iterate
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There are various ways to compare images

Define the “reference” 
as the true image  

modified by the CTF :





We wish to compare a 
data image  with it.

A
C

R = CA

X

Squared difference 

       


                        


Correlation 



           


Correlation coefficient 

∥X − R∥2 = ∑
j

(𝖷j − 𝖱j)2

= ∥X∥2 − 2X ⋅ R + ∥R∥2

Cor = X ⋅ R
= ∑

j

𝖷j𝖱j

CC =
X ⋅ R

|X | |R |

Notation used here:


A single pixel in the image :

                  —the   pixel (out of  pixels total)


The  image in the dataset :

          

X
𝖷j jth J

ith X
Xi



Probabilities, another way to compare images

w

XjRj

P(Xj |Rj)




Probability of a pixel value:





Probability of observing an image that

comes from :





X = R + N

P(𝖷j |𝖱j) =
w

2πσ2
e−(𝖷j−𝖱j)2/2σ2

R

P(X |R) =
wJ

(2πσ2)J/2
e−||X−R||2/2σ2  is the finesse of the pixel 

intensity measurements. We’ll 
ignore it (set it to 1).

w

1

1



Probabilities, another way to compare images

XjRj

P(Xj |Rj)




Probability of observing an image that

comes from :





_______________

(The normalization factor  we’ll treat as a constant 

and ignore it.)


X = R + N

R
P(X |R) = c e−||X−R||2/2σ2

c



The Likelihood

Let  be our “stack” of particle images. We’d like to find 
the best 3D volume consistent with these data, say maximizing

                                    .


According to Bayes’ theorem,


                         .


1.  doesn’t depend on  so we can ignore it.

2.  is called the prior probability. It reflects any knowledge about 
that we have before considering the data set. 

3.  is something we can calculate. It’s called the likelihood of .

X = {X1 . . XN}

P(V |X)

P(V |X) = P(X |V)
P(V)
P(X)

P(X) V
P(V) V

P(X |V) V

prior      Experiment      posterior 
 

→ →

Lik(V) = P(X |V)



We know how to compute the likelihood

We know that


                  
P(X |V, ϕ) = c e−∥X−CPϕV/∥2/2σ2

Maximum-likelihood reconstruction is finding  that maximizes .V L

To get the likelihood for one image we just integrate over all the ’s:


                  


ϕ

P(X |V) = ∫ P(X |V, ϕ) dϕ

To get the likelihood for the whole dataset we compute the product over all the images,


                  ,
P(X |V) =
N

∏
i

∫ P(Xi |V, ϕ) dϕ

or for numerical sanity, we compute the log likelihood,


                  .L =
N

∑
i

ln (∫ P(Xi |V, ϕ) dϕ)



Maximum-likelihood estimation is asymptotically unbiased

If the size of the dataset grows without bounds

(and the number of parameters to be estimated do not) 

ML converges to the right answer.

                  .L =
N

∑
i

ln (∫ P(Xi |V, ϕ) dϕ)



To maximize the likelihood, we’ll need a probability function Γ(ϕ)

A projection





Probability of observing an image 





Probability of a projection direction





A = PϕV

Xi

P(Xi |V, ϕ) = c e−||Xi−CPϕV||2/2σ2

Γi(ϕ) = P(ϕ |Xi, V) =
P(Xi |V, ϕ)

∫ P(Xi |V, ϕ)dϕ



The E-M algorithm finds a local maximum of the likelihood

The Expectation-Maximization (E-M) algorithm has this iteration, 
guaranteed to increase the likelihood:


            


…Relion’s compute-intensive “Expectation” step is basically the 

evaluation of  for each image 


V(n+1) =
∑i ∫ Γ(n)

i (ϕ)PT
ϕCiXi dϕ

σ2

Tτ2 + ∑i ∫ Γ(n)
i (ϕ)PT

ϕC2
i dϕ

Γi(ϕ) Xi

For comparison, here is Frealign’s 
iteration: 


1. Find the best orientation  for 
each particle image 


2. Update the volume according to


       

ϕi
Xi

V(n+1) =
∑i PT

ϕi
CiXi

k + ∑i PT
ϕi

C2
i



Determining the orientation angles: example from the TRPV1 dataset

Projection

Simulated image

Projection

Simulated image

1/4 of a micrograph - empiar.org/10005 One particle image

http://empiar.org/10005


The probability of orientations  is remarkably sharpP(ϕ |X, V)



The probability of orientations  is remarkably sharpP(ϕ |X, V)



The orientation determination is the most expensive step

No. operations 



The orientation determination is the most expensive step

No. operations 

e.g. N=105, n=128, t=7 

No. operations ≈ 6 x 1017 ≈ 19 CPU-years 

With efficient programs, ~ 1 CPU-month



Reconstruction: on the first EM iteration, angle assignments mainly arise from geometry



Iteration 3



Iteration 5



Iteration 14, near convergence: distributions are becoming sharp



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ



Probabilities, another way to compare imagesEvaluating  is expensive: one of 5 parametersΓϕ



1. To save time, we 
compute probabilities 
of orientations at low 

resolution.


2. We place bounds on 
how much higher the 

probabilities could be at 
full resolution.


Given a cutoff value, we 
evaluate over a fraction of 

the domain. 

Domain reduction: branch and bound, illustrated for 1D



Any sufficiently advanced technology is indistinguishable from magic. 
                                                                                    -Arthur C. Clarke 




