2023 Winter-Spring EM Course

anatomy of an EM JANUARY 12, 2023

Simons Electron Microscopy Center

NEW YORK STRUCTURAL BIOLOGY CENTER

CRYOEM: SCALE WITHIN BIOLOGY

Electron Microscopy

CRYOEM: TECHNOLOGY ON THE RISE

Single particle cryoEM

Micro crystal electron diffraction (microED)

Cryo Electron Tomography (cryoET)

WHAT IS POSSIBLE TODAY?

Transmitted electrons

ELECTRONS

Elastic scattering

 \square

Characteristic A-rays

SE

Inelastic scattering

Main beam electrons

CRYOEM: WHY ELECTRONS?

Pros

Small wavelength Can be focused

Damages sample worse with faster electrons

Poor penetration better with faster electrons

CRYOEM: WHY ELECTRONS?

Ideal dose for cryoEM?

Radiation damage	1 damage 82 K (liquid N2 cooling)		12 K (liquid He cooling)	
0	10 or 20 or /42	0 0 0	0000	
TU OF 20 E /A		000	0000	
	120 / 42	0000	0.心心心。	
	120 e /A-	0000		
	200 / 4 2	o li o 🏟		
	200 e7A-	0 6 0 4	新教教教	
	250 (42	0000	日感谢静	
	350 e7A4	白瓜口称	清意意。	

https://cryo-em-course.caltech.edu/

Specimen Behavior in the Electron Beam

R.M. Glaeser¹

Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, United States ¹Corresponding author: c-mail address: rmglaeser@lbl.gov

• The first noticeable bubbles appear after the accumulated exposure (for 300 keV electrons) is approximately 150 e/A. At this high exposure, high-resolution features would long since be destroyed, of course, but the macromolecular particles might still be visible.

CRYOEM: THE MICROSCOPE

Eye

Light source

Condenser lens

Sample

Objective lens

Eye piece lens

e- source

Condenser lens Sample

> Objective lens

Projection lens

ELECTRON SOURCES What are the 3 main kinds of electron sources?

nanoscience.com

ELECTRON SOURCES & TYPES OF CRYOEM

80-120 kV: Hitachi 7800, JEOL1400, TFS Talos 120 W or LaB6

High contrast & robust

sub-nm resolution

[developments ongoing to push resolution with FEG systems]

200 kV: J2100F; TFS Tecnai, Glacios, Arctica FEG

 $2 + \text{\AA}$ resolution (3.5-4 Å)

300 kV: JEOL3200FSC, cryoARM; TFS Krios, Halo FEG Smaller effect on unwanted lens aberrations

- 1.5-3 Å resolution

SACUUM SYSTEMS

Why do we need a vacuum?

Filament - O2 will burn out source

- **Beam coherence** at STP mean free path ~1 cm
- **Insulation** interaction between e- and air
- **Contamination** reduce interaction gas, e-beam and sample

SACUUM SYSTEMS

$I mm Hg = I Torr = 10^2 Pa$ What types of pumps do we have? $atm = 760 \text{ Torr} = 7.5 \times 10^4 \text{ Pa}$

IGP

wikipedia.com

|-|0⁻³ Torr | >0.| Pa **PVP / Rotary**

10-3-10-6 Torr | 0.1-10-4 Pa Diffusion

10-6-10-9 Torr | 10-4-10-7 Pa Turbo

10-9-10-12 Torr | 10-7-10-9 Pa

SACUUM SYSTEMS

10⁻⁹ Torr

| 0-6 - | 0-7 Torr

$I mm Hg = I Torr = 10^2 Pa$ $atm = 760 \text{ Torr} = 7.5 \times 10^4 \text{ Pa}$

acuum (Super	visor)		Cryo] Settings]	Contr	ol)
Status: CC	DL. VALVES	6	Default p Default a	ressure unit: irlock time:		
iun/Col amera uffertank acking line <mark>Col. Valves Closed</mark>	6 17 33 55	Log Log Log Log	Pressure Gun/Col Camera Buffertanl Backing	88.2 0.3 × 0.1 3.8	Torr 9 e-9 5 e-6 9	11 46 25 514
10 ¹	Vacuum Overview					-
	P5: 1		Pir!	5 Col-Gun Air -)	(N2) V11 V6 V10	0
	IGP1: 6	V8		D of		
	P3: 17) Pen 3		
	P1: 33 P2: 55		V1 V	•) Pir 1 •) Pir 2	V2	
	Unit: log					
	Process information:	Column valves c	osed			

10-5 - 10-6 Torr

Microscope Alignments What to do & what not to do

- Do:
 - Start at eucentric height and focus
 - Check if it is already good before attempt
 - Align from top to bottom
- Not to do:
 - Align without a way to undo
 - Align when TEM is not stable (i.e., temperature)

DETECTORS Digital Cameras for TEM

- Photon converted
- Direct sensing

DETECTORS Detector Performance Characterization

- MTF (Modulation Transfer Transform)

• DQE (Detector Quantum) Efficiency)

DETECTORS Detector Performance Characterization

dectris.com

Ruskin, et al JSB

K3 specs

https://www.gatan.com/K3

Specifications

	КЗ	K3 Base	
TEM operating voltage (kV)	200/300		
Sensor size (pixels)	5,760 x 4,096	3,456 x 4,096	
Readout modes	Counting Super-resolution	Counting	
Max. image size (pixels)	11,520 x 8,184 Super-resolution	3,456 x 4,096	
Performance relative to physical Nyquist (DQE) Peak 0.5	>0.87 / >0.83 >0.53 / >0.53	>0.8 >0.5	
Sensor read-out (full fps)	>1500		
Transfer speed to computer (full fps)	>75	>25	
Motion correction	Inline		
Gatan Microscopy Suite® software	Included		
Automation support	Latitude and other third-party software		

Specifications are subject to change without notice.

Counting mode

Electron enters detector.

Electron signal is scattered.

https://www.gatan.com/improving-dqe-counting-and-super-resolution

5,760 x 4,096 px 11,520 x 8,184 px

Charge collects in each pixel.

Events reduced to highest charge pixels.

K3 lowers Read Noise with Correlated Double Sampling (CDS)

Standard mode

https://www.gatan.com/

CDS mode

Net readout = Read₁ - Read₀

Falcon4 specs

Full Temporal Resolution Record all single frames, no fractionation

Full Spatial F All localized ev Coordinates	Resolution /ents	
x	У	
3953.24	2845.63	
919.78	1447.39	
3864.43	348.13	
3606.05	1539.54	
1758.86	2971.55	
0.0 G	ច ត ស	
3963.58	531.96	

Counted events of all raw frames with full temporal resolution (320 fps) and spatial resolution (events are localized to onesixteenth of a pixel). Camera archite

Sensor size

Pixel size

TEM Operating

Internal frame

Frame rate to a

Camera Overh

File formats

Lifetime (<10%

Detection Mod

Imaging perfor

DQE (0)

DQE (1/2 Nq)

DQE (1 Nq)

https://www.thermofisher.com/us/en/home/electron-microscopy/products/accessories-em/falcon-detector.html

ecture	Direct electron detection	
	4,096 × 4,096 pixels, ~ 5.7 x 5.7 cm ²	
	14 x 14 µm²	
y voltage	200 kV, 300 kV	
rate	320 fps	
storage	320 fps (EER mode)	
ead time	0.5 s per acquisition Electron-event representation (EEF EER (native), MRC, TIFF, LZW TIFF	
DQE degradation)	5 years in normal use (1.5Ge/px)	
es	Electron counting mode Survey mode (fast linear mode)	
mance in EER mode (4k x 4k)	300 kV	200 kV
	0.92	0.91
	0.72	0.62
	0.50	0.33

DETECTORS

0.5 e⁻/Å²/frame Image = Frame1 + Frame2 + Frame3 + Frame4 + Frame5 We can use DDD movies to examine (and correct) "beam induced motion"

Images are movies

DETECTORS

60-frame average (no alignment)

Correcting for movement

60-frame average (translational alignment)

Brilot C.F. et al. (2012) J Struct Biol.

And true "atomic" resolution is possible:

Nakane, et al. Single-particle cryo-EM at atomic resolution. Nature (2020).

HOW ARE SAMPLES PREPARED?

Transmitted electrons

ELECTRONS

Elastic scattering

 \square

Characteristic A-rays

SE

Inelastic scattering

Main beam electrons

ANATOMY OF AN SEM

Electron gun: range from tungsten filaments in lower vacuum SEMs to FEGs which need modern high vacuum SEMs

Beam energy: 0.2 – 40 keV is focused by a condenser lens system into a spot of 0.4 – 5 nm

Beam is deflected by very fast scanning coils and rasters the sample surface

Typical resolution of SEM is between 1 and 20 nm where the record is 0.4 nm

ANATOMY OF AN SEM – BEAM SAMPLE INTERACTIONS

incident high kV beam

modified from Williams & Carter (1996) Fig. 1.3

ANATOMY OF AN SEM – BEAM SAMPLE INTERACTIONS & IMAGE FORMATION

 \bigvee_{\leftarrow}

 $h\nu$

Backscatered electrons

X rays 🔍

ANATOMY OF AN SEM – BEAM SAMPLE INTERACTIONS & IMAGE FORMATION

Titanium atomic number 22

Silicon atomic number 14

THE START

Questions?

