2023 Winter-Spring EM Course

Sample preparation for cry

C Simons Electron Microscopy Center

NEW YORK STRUCTURAL BIOLOGY CENTER

CRYOEM: TECHNOLOGY ON THE RISE

Single particle cryoEM

Micro crystal electron diffraction (microED)

Cryo Electron Tomography (cryoET)

And true "atomic" resolution is possible:

Nakane, et al. Single-particle cryo-EM at atomic resolution. Nature (2020).

Vitrifying a biological sample

Vitrifying a biological sample

WHAT DO GRIDS LOOK LIKE?

WHAT DO GRIDS LOOK LIKE?

Common Materials Copper Nickel Gold Aluminum Molybdenum Titanium **Stainless Steel**

https://www.tedpella.com/grids_html/

TERMINOLOGY

Grid (Cu, Au, Mo, etc...) mesh

Foil (C, Au, etc...)

- Continuous
- lacy
- holey (hole size and spacing)

https://edgescientific.com/product-category/tem-supplies/tem-support-films/

WHAT DOES A GRID LOOK LIKE?

• Protochips.com

Quantifoil.com

TERMINOLOGY

Russo & Passmore, 2015

GOLD GRIDS

Holey gold foil on gold mesh grid

Advantages:

- Prevents differential thermal contraction when freezing
- Reduces beam-induced specimen movement
- Combined with direct detector technology allows for near atomic resolution

Disadvantages:

Difficult to find focus due to lack of amorphous substrate

Russo & Passmore, 2015

GOLD GRIDS

Russo & Passmore, 2015

GOLD GRIDS - how much better are they?

A. 80S ribosome movement during irradiation supported by amorphous carbon and gold using same imaging conditions.

Apoferritin density maps using same imaging conditions and identical processing for **B**. carbon and **C**. gold substrates. **B**. is at 25 Å and **C**. 8 Å resolution.

VITRIFICATION PROCESS

- Liquid ethane is a suitable coolant.
- Liquid nitrogen boils on contact, which makes it a poor coolant for cryo-EM.
- Cooling speed faster than 10⁵-10⁶ K/s ensure the formation of vitrified ice.

Setup of liquid ethane (Image from Wen Jiang) Cooling speed & forms of ice

a poor coolant for cryo-EM. formation of vitrified ice.

Jacques Dubochet et al., 1988

VITRIFICATION PROCESS

A hypothetical scenario during cryoEM grid preparation

A hypothetical scenario during cryoEM grid preparation

A hypothetical scenario during cryoEM grid preparation

What issues arise?

Noble AJ, et al. Routine single particle CryoEM sample and grid characterization by tomography. Elife. 2018;7.

Alex Noble

Small protein

- VPP
- Thinner ice

Protein denaturation/Dissociation of protein complex

- Continuous carbon film
- Graphene oxide
- Cross-linking (GraFix)

Preferred orientation

- Tilt stage
- Cross-linking
- Detergent
- Glow-discharging conditions
- Support film (Graphene oxide)
- Image analysis (3D classification)

Flexibility

- Focused classification (subtraction)
- Multibody refinement

Filamentous protein

• Segmented analysis

Low concentration

- Multiple blots
- Affinity grids

Reagents for improving vitrification of Cryo-EM grids used in single particle analysis.

Molecular Formula: (C6.2H10.3O1.35N0.65Na0.35)35

Molecular Weight: approx. 8 kDa

CAS#: 1423685-21-5

Amphipol A8-35

• A short amphipathic polymer that is specifically designed for membrane protein stabilization. The surfactant possesses a very high affinity for the transmembrane surfaces and allows to solubilize membrane proteins in a detergent-free aqueous solution

Reagents for improving vitrification of Cryo-EM grids used in single particle analysis.

Surfactants and Cryoprotectants	Amount	Conc.	СМС	Class
Fluorinated Octyl Maltoside (FOM)	100 µl	0.41% (w/v)	0.07% (w/v)	non-ionic detergent
Hexadecyl-trimethyl-ammonium Bromide (CTAB)	100 µl	0.34% (w/v)	0.03% (w/v)	cationic detergent
n-Decyl-ß-D-Maltoside (DM)	100 µl	0.87% (w/v)	0.09% (w/v)	non-ionic detergent
n-Decyl-α-D-Maltoside (DαM)	100 µl	0.46% (w/v)	0.08% (w/v)	non-ionic detergent
n-Dodecyl-ß-D-Maltoside (DDM)	100 µl	0.09% (w/v)	0.01% (w/v)	non-ionic detergent
Sodium Deoxycholate	100 µl	1.66% (w/v)	0.17% (w/v)	anionic detergent
Triton X-100	100 µl	0.15% (w/v)	0.01% (w/v)	non-ionic detergent
Tween 20	100 µl	1% (w/v)	0.01% (w/v)	non-ionic detergent
CHAPSO	100 µl	2.5% (w/v)	0.5% (w/v)	zwitterionic detergent
Amphipol A8-35	100 µl	5% (w/v)		anionic surfactant
Glycerol	1 ml	30% (w/v)		cryoprotectant
https://www.mitogon.com/product/cryo_om_vitrification_startor_kit/				

<u>nups://www.mitegen.com/product/cryo-em-vitrification-starter-kit/</u>

[1] Noble *et al.* (2018) Routine Single Particle CryoEM Sample and Grid Characterization by Tomography. DOI: 10.7554/eLife.34257. [2] Thonghin *et al.* (2018) Cryo-electron microscopy of membrane proteins. Methods 147:176. [3] Drulyte *et al.* (2018) Approaches to altering particle distributions in cryoelectron microscopy sample preparation. Acta Cryst. D 74:560. [4] Glaeser *et al.* (2017) Opinion: hazards faced by macromolecules when confined to thin aqueous films. *Biophys Rep* **3**:1. [5] Gatsogiannis *et al.* (2016). Membrane insertion of a Tc toxin in near-atomic detail. Nat. Struct. Mol. Biol. 23:884. [6] Efremov *et al.* (2015) Architecture and conformational switch mechanism of the ryanodine receptor. *Nature* **517**:39.

REAGENTS FOR IMPROVING VITRIFICATION OF CRYO-EM GRIDS USED IN SINGLE PARTICLE ANALYSIS.

PDB Release Date	PDB	Protein	Additive
2020-01-08	6PWN	MscS mechanosensitive channel	0.01% f-OM
2019-09-04	6KG7	Piezo2 mechanosensitive channel	0.65 mM f-FC8
2019-08-28	6QTI	Nicotinamide nucleotide proton channel	0.05% CHAPS
2019-08-07	6R7L	SecYEG translocon	0.2% f-OM
2019-02-06	6E0H	TMEM16 scramblase	3 mM f-FC8
2018-12-19	6N3Q	Sec protein-translocation channel complex	3 mM f-FC8
2018-11-07	6H3I	Type 9 secretion system translocon	1.5 mM f-FC8 or 0.7 mM f-OM
2018-10-24	6DMR	TRPV5 ion channel	3 mM f-FC8
2018-10-17	6D3R	CFTR	3 mM f-FC8
2018-09-26	6HJR	Influenza Hemagglutinin	2% Octyl Glucoside
2018-08-08	6FOO	Ryanodine receptor 1	0.2% f-OM
2018-08-01	6CJQ	SthK CNG Potassium channel	3 mM f-FC8
2018-05-23	5YX9	TRPC6 ion channel	0.5 mM f-OM
2018-01-31	6C0V	P-Glycoprotein transporter ABCB1	3 mM f-FC8
2017-12-27	6B5V	TRPV5 ion channel	3 mM f-FC8
2017-12-13	6BPQ	TRPM8 channel	2% DMSO

https://www.anatrace.com/Landing/2020/Mar20-Newsletter

Glaeser, RM, et al. (2017) Biophys Rep 3(1), 1-7.

Noble, AJ, et al. (2018) Nat Methods 15(10), 793-795.

Drulyte, I et al. (2018) Acta Crystallogr D Struct Biol 74(Pt 6), 560-571.

Chen, J, et al. (2019) J Struct Biol X Volume 1. DOI: 10.1016/ j.yjsbx.2019.100005

THE OPTIMIZATION WORKFLOW

Structure determination by cryo-EM.

A systematic approach to 3D structure determination is shown. In the left column, the major steps are listed. Each step should be performed successively and only after one has been completed successfully should the scientist move onto the next step. In the second column, example data are shown for ribosomes (details in text). Scale bars on the micrographs are 500 Å. Each step should be evaluated with the criteria listed in the third column, returning to earlier steps for troubleshooting.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5140023/

Accurate pL dispensing

Dandey VP, Wei H, Zhang Z, Tan YZ, Acharya P, Eng ET, Rice WJ, Kahn PA, Potter CS, Carragher B. Spotiton: New features and applications. Journal of structural biology. 2018;202(2):161-9

Venkat Dandey

Hui Wei

Thin films without blotting

Dandey VP, Wei H, Zhang Z, Tan YZ, Acharya P, Eng ET, Rice WJ, Kahn PA, Potter CS, Carragher B. Spotiton: New features and applications. Journal of structural biology. 2018;202(2):161-9

Hui Wei

SPOTITON 1.0 ON-THE FLY SPOTTING

Wei H, Dandey VP, Zhang Z, Raczkowski A, Rice WJ, Carragher B, Potter CS. Optimizing "selfwicking" nanowire grids. J Struct Biol. 2018;202(2):170-4.

Single frame from loop

Video loop

Wei H, Dandey VP, Zhang Z, Raczkowski A, Rice WJ, Carragher B, Potter CS. Optimizing "selfwicking" nanowire grids. J Struct Biol. 2018;202(2):170-4.

Single frame from loop

Video loop

Wei H, Dandey VP, Zhang Z, Raczkowski A, Rice WJ, Carragher B, Potter CS. Optimizing "selfwicking" nanowire grids. J Struct Biol. 2018;202(2):170-4.

Single frame from loop

Video loop

Wei H, Dandey VP, Zhang Z, Raczkowski A, Rice WJ, Carragher B, Potter CS. Optimizing "selfwicking" nanowire grids. J Struct Biol. 2018;202(2):170-4.

Vitrobot

potiton

S

grid; ~2nL on grid

Usable area: ~0-10%

3 uL of sample enough for >100 grids; ~500pL on grid

Usable area: ~100%

screening time: 10 minutes

Ice thickness variation:

The Spotiton Project: Commercialization

Spotiton concept: 2011

Chameleon: 2019

iii sptlabtech

Alex Wei

Venkat Dandey

CRYOEM: TECHNOLOGY ON THE RISE

????

TBD (20??)

WHERE ARE WE HEADING?

Sample

Automated Data Collection (Leginon, etc.)

Grid preparation

100°s / day Tilt Image: 1/56 -53.99 deg

Towards Automation for In Situ CryoEM

Deep learning?

Streamlined Processing (Appion Protomo)

HOW THIN DOES THE SAMPLE NEED TO BE?

50 nm Bacteriophage (ϕ 12)

E. coli, Salmonella, Cyanobacteria

TO BE CONTINUED

Questions?

