CRYOEM 001 : SPA PROCESSING WORKFLOW, VALIDATION AND OTHER MATTERS

February 15, 2023

New York Structural Biology Center

SIMONS ELECTRON MICROSCOPY CENTER

SINGLE PARTICLE ANALYSIS

SINGLE PARTICLE ANALYSIS WORKFLOW

EXAMPLE: SINGLE-PARTICLE WORKFLOW

During EM session After EM session **SEMC** Home institution Leginon Appion computing computing/cluster session session Micrograph/ Setting up 2D classification Frame alignment Particle sorting workflow Initial 2D classification Data acquisition **CTF** estimation **3D** classification Workflow Initial model Particle picking **3D** refinement Optimization generation if needed Micrograph/ **3D** refinement Model building Particle curating cryoSPARC/RELION/cisTEM Leginon **csLIVE** Appion

MICROGRAPH EVALUATION

[Home][Logout eeng][eeng Profile][summary] [processing] (make jpgs]

all (all)

16dec31d - proteasome grid screening and possible collection 135k krig... Select SEMC - Proteasome test project -ali microscopes #images :485 × View 1 2 2 2 3 4 1 minute P Minute X Main View cflat0.5-2.0-1_3gr_30sq_5hin_7enn cflat0.5-2.0-1_3gr_30sq_5hin_6enn trash hide all mext exemplar 100 enn 50 cflat0.5-2.0-1_3gr_30sq_5hin_5enn mag: 2250 defocus: -40.00 µm pixelsize: mag: 130000 defocus: -2.02 µm pixelsize: 0.88 Å dose: 61.80 e^{-/Å²} cflat0.5-2.0-1_3gr_30sq_5hin_4enn 208.88 Å dose: none 16dec31d cflat0.5-2.0-1 00003gr 00030sg v02 00004hin v01 00007enn.mcc cflat0.5-2.0-1_3gr_30sq_5hin_3enn 16dec31d_cflat0.5-2.0-1_00003gr_00030sg_v02.mrc cflat0.5-2.0-1_3gr_30sg_5hin_2enn cflat0.5-2.0-1_3gr_30sq_4hin_7enn update cflat0.5-2.0-1_3gr_30sq_4hin_6enn 16dec31d_cflat0.5-2.0-1_000 02.mrc cflat0.5-2.0-1_3gr_30sq_4hin_5enn cflat0.5-2.0-1 3gr 30sg 4hln 4enn 16dec31d_cflat0.5-2.0-1_00003gr_00030sq_v02_00004hln_v01 cflat0.5-2.0-1_3gr_30sq_4hin_3enn cflat0.5-2.0-1_3gr_30sq_3hin_6enn cflat0.5-2.0-1_3gr_30sg_3hin_4enn cflat0.5-2.0-1_3gr_30sq_3hin_3enn cflat0.5-2.0-1_3gr_30sq_3hin_2enn cflat0.5-2.0-1_3gr_30sq_2hin_8enn cflat0.5-2.0-1 3gr 30sg 2hin 7enn cflat0.5-2.0-1_3gr_30sq_2hin_6enn cflat0.5-2.0-1_3gr_30sg_2hin_5enn cflat0.5-2.0-1 3gr 30sg 2hin 4enn cflat0.5-2.0-1_3gr_30sq_2hin_3enn cflat0.5-2.0-1_3gr_30sq_2hin_2enn cflat0.5-2.0-1_3gr_29sq_2hin_8enn cflat0.5-2.0-1_3gr_29sg_2hin_7enn cflat0.5-2.0-1_3gr_29sq_2hin_6enn 2. @ [[] + 1 m m] + 2 - 医田田 × View 3 cflat0.5-2.0-1_3gr_29sq_2hin_5enn cflat0.5-2.0-1 3gr 29sg 2hin 4enn all cflat0.5-2.0-1_3gr_29sq_2hin_3enn cflat0.5-2.0-1_3gr_29sg_2hin_2enn mag: 130000 defocus: -2.02 µm pixelsize: cflat0.5-2.0-1_23gr_26sq_3hin_8enn 0.88 Å dose: 61.80 e^{-/Å²} cflat0.5-2.0-1_23gr_26sq_3hin_7enn 16dec31d cflat0.5-2.0cflat0.5-2.0-1_23gr_26sq_3hin_6enn 4 00000ar 00030as v02 00004bis v04 00007eas me cflat0.5-2.0-1_23gr_26sq_3hln_5enn 16dec31d_cflat0.5-2.0-1.000 02_00004hln_v01_0000/enn.mr cflat0.5-2.0-1 23gr 26sg 3hin 4enn cflat0.5-2.0-1 23gr 26sg 3hln 3enn cflat0.5-2.0-1_23gr_26sq_3hln_2enn cflat0.5-2.0-1_23gr_26sq_2hin_10enn cflat0.5-2.0-1 23pr 26sp 2hln 9enn

Difference of Gaussian (DoG) Picker

Difference of Gaussian (DoG) Picker

Low Pass Filtering

Difference of Gaussian (DoG) Picker

DoG Map

Difference of Gaussian (DoG) Picker

ONE MORE NOTE About defocus

Highlights

•The spatial-coherence envelope function has almost no effect under the conditions used in cryo-EM.

•Even for defocus values as high as 8 μm , this envelope remains negligible compared to other factors.

•On the other hand, delocalization of highresolution information can become an important factor.

•For many situations, it may thus be beneficial to use defocus values as high as ${\sim}5~\mu\text{m}$ or more.

Ultramicroscopy Volume 222, March 2021, 113213

Defocus-dependent Thon-ring fading

Robert M. Glaeser ^a A B, Wim J.H. Hagen ^b, Bong-Gyoon Han ^c, Richard Henderson ^d, Greg McMullan ^c, Christopher J, Russo ^f

Show more 🗸

+ Add to Mendeley eg Share 55 Cite https://doi.org/10.1016/j.ultramic.2021.113213 a Get rights and content a Under a Creative Commons license a e open occess

ONE MORE NOTE About defocus

Download : Download high-res image (2MB) Download : Download full-size image

Fig. 1. Examples showing the focus-dependent delocalization of information carried by interference between scattered electrons and the unscattered, reference wave.

ONE MORE NOTE About defocus

Fig. 3. Image "gold-20", recorded at 8 µm defocus, showing how delocalization of one of the half-wavelets corresponding to the Au (111) lattice planes is moved outside the field of view of the camera. Gold nanoparticle #2 is labelled, with the diffracting crystallite labelled A, and the positions of 2.35 Å lattice fringe patches labelled B and C. Area C is outside the field of view, so this half-wavelet is not observed and it does not contribute to the power spectrum. Area B is shown at higher magnification in the right panel of Fig. 1B. The area outlined in the center would be the only region able to produce Thon-ring modulations at the 2.35 Å gold-lattice spacing in all directions, but, within this field of view, there is only about half of one of the 17 gold particles that is located within the outlined area. As a result, the power spectrum of this image shows no Thon-ring contribution to the power spectrum of such nanoparticles.

ALIGNMENT

emgweb.nysbc.org/betamyamiweb/map.php?imgsc=getimg.php&preset...

		date time: session id: description: # particles: # images used: file size: path:	2017-01-08 16 15workshopl stack from dog 798 4 12.5 MB /qpfs/appion/te
averaged stack image [Center Particles] [Learning Stack Cleaner] [Sort Junk] [Create Substack] [Mask Particles with Box]	mean/stdev montage [Filter by Mean/Stdev]	stack file: box size: pixel size: ctf correct: selection run:	start.hed the 64 pixels 4.41 Å/pixel yes, ace2imag ddogrun1 (1)

ALIGNMENT

stack: /gpfs/appion/test/15workshopI/align/maxlike1/part17jan08r24_average.hed #images: 8

from: 0	to: 7	binning: 1	• quality:	jpeg 50 -	info:	🛛 scale bar: 🖂	Load
Selection mode:	select						

Selected	images: 0,5						
Select:	View Raw Particles	View Aligned Particles	Create SubStack	Create Templates	Include Particles	Create Template Stack	Run Common Lines
Exclude	d images: 1,2,3,4,6	,7		1			
Exclude	Create SubStack						

ALIGNMENT

[Show original stack summary page]

Feature Analysis List

Show Composite Page

CLUSTERING

Cluster Stack List

Show Composite Page

Clustering Info: cl2d4 (ID: 3) with 5 clusters

Type: Xmipp 2 CL2D

- 24 Class Averages, level 04: (ID 8)
- 16 Class Averages, level 03: (ID 7)
- 8 Class Averages, level 02: (ID 6)
- 4 Class Averages, level 01: (ID 5)
- 2 Class Averages, level 00: (ID 4)

	stack: /gpts/appic #images: 24	n/test/1:	workshopi/align/cl20	14/part17jan09a	14_level_04_hed			
	from: 0	to: 23	binning; 1	t quality:	peg 50 🛊 info: 🛃 s	cale bar: Load	1	
	Selection mode:	exclude	1					
	Selected images:	Ĺ						
_	Select: View Raw	Particles	View Aligned Particles	Create SubStack	Create Templates	Include Particles	Create Template Stack	Run Common Line
s	Excluded images	4						
- 0	Exclude: Grante :	SubStack	Create Template Stack	Run Common Li	mara			

VALIDATION

3D map generation -

Resolution estimation

- FSC between 2 half-maps
- Independent refinement of the two halves (gold standard)
- Independent high resolution shells
- Local resolution
- Resmap
- Bsoft LocRes
- Masking individual domains
- Variance estimation
- Resmap

2023-02-15 : 25115 EMDB map entries, 14303 PDB coordinate entries RCSB PDB | PDBe

EMDataResource Unified Data Resource for 3DEM

Home About Deposit Search Tools • Events • News Links Help •

Search EMDB

Validation

A key mission of EMDataResource is to engage the 3DEM community in activities that encourage develop validation procedures for 3DEM structures. The Electron Microscopy Validation Task Force (EM VTF) met on September 28-29, 2010 at Rutgers University in New Brunswick NJ. The workshop was co-chaired by Richard Henderson (MRC, Cambridge) for map validation and Andrej Sali (UCSF) for model validation. The EM VTF's initial recommendations are published here: Henderson et al (2012), Structure 20, 205-214. We have also hosted map and model challenges with the goal of encouraging development of new assessment procedures. Results are summarized in this 2010 Biopolymers Special Issue and this 2018 Journal of Structural Biology Special Issue.

Compiled below are validation servers that we are aware of that can be used to assess 3DEM Map and Model quality. Please send any corrections/additions to help@emdataresource.org.

Validation Services: Maps

- Fourier Shell Correlation (FSC): Upload two independent half maps, receive the calculated FSC curve in a standardized format for deposition into EMDB, view and download a plot of the FSC curve (example plot). Developed and hosted at PDBe.
- 3DFSC: Provides a quantitative measure of directional resolution anisotropy, as described in Tan et al Nature Methods 2017. Hosted at the Salk Institute (requires login).
- Tilt-Pair: Validate map hand and overall shape for lower resolution maps in which secondary structure features are absent. This server, originally developed by the Rosenthal group (Wasilewski et al J. Struct Biol 2014), has been migrated to PDBe.
- Scipion: Calculate the local resolution of your map using ResMap, Blocres (from Bsoft), and MonoRes (Xmipp). Reference: Mingo et al Protein Science 2017. Hosted at CNB-CSIC (Spain).

WHY IS IT SO CHALLENGING?

EINSTEIN FROM NOISE

J Struct Biol. 2009 Apr;166(1):67-78. doi: 10.1016/j.jsb.2008.12.008. Epub 2008 Dec 30.

A method for the alignment of heterogeneous macromolecules from electron microscopy

Maxim Shatsky 3, Richard J Hall, Steven E Brenner, Robert M Glaeser

Affiliations + expand PMID: 19166941 PMCID: PMC2740748 DOI: 10.1016/j.jsb.2008.12.008

EINSTEIN FROM Noise

Mao *et al.* (2013) *PNAS <u>110</u>: 12438-12443*

Henderson (2013) PNAS <u>110</u>: 18037-18041

-adapted from Tom Walz

Compare reference free averages with projections

Tilt-pair analysis

"Gold standard" FSC

Randomize phases

Appearance of expected secondary structure elements

only checks consistency of 3D map with 2D data – excellent, also establishes handedness – not necessarily needed (but now pretty much default) – excellent (implemented in software packages) – Evaluate with published information

-adapted from Tom Walz

Outcome of the First Electron Microscopy Validation Task Force Meeting

Richard Henderson,¹ Andrej Sali,² Matthew L. Baker,³ Bridget Carragher,⁴ Batsal Devkota,⁵ Kenneth H. Downing,⁶ Edward H. Egelman,⁷ Zukang Feng,⁵ Joachim Frank,^{8,9} Nikolaus Grigorieff,¹⁰ Wen Jiang,¹¹ Steven J. Ludtke,³ Ohad Medalia,^{12,21} Pawel A. Penczek,¹³ Peter B. Rosenthal,¹⁴ Michael G. Rossmann,¹⁵ Michael F. Schmid,³ Gunnar F. Schröder,¹⁶ Alasdair C. Steven,¹⁷ David L. Stokes,¹⁸ John D. Westbrook,⁵ Willy Wriggers,¹⁹ Huanwang Yang,⁵ Jasmine Young,⁵ Helen M. Berman,⁵ Wah Chiu,³ Gerard J. Kleywegt,²⁰ and Catherine L. Lawson^{5,*}

Compare reference free averages with projections

Tilt-pair analysis

"Gold standard" FSC

Randomize phases

Appearance of expected secondary structure elements

only checks consistency of 3D map with 2D data – excellent, also establishes handedness – not necessarily needed (but now pretty much default) – excellent (implemented in software packages) – Evaluate with published information

-adapted from Tom Walz

Compare reference free average with projections

Tilt-pair analysis

"Gold standard" FSC

Randomize phases

Appearance of expected secondary structure elements

only checks consistency of 3D ma with 2D data – excellent, also establishes handedness – not necessarily needed (but now pret much default) – excellent (implemented in software packages) – Evaluate with published information

-adapted from Tom Walz

Particle stack $(+\alpha)$

Compare reference free averages with projections

Tilt-pair analysis

"Gold standard" FSC

Randomize phases

Appearance of expected secondary structure elements

only checks consistency of 3D map with 2D data – excellent, also establishes handedness – not necessarily needed (but now pretty much default) – excellent (implemented in software packages) – Evaluate with published information

-adapted from Tom Walz

Compare reference free averages with projections

Tilt-pair analysis

"Gold standard" FSC

Randomize phases

Appearance of expected secondary structure elements

only checks consistency of 3D map with 2D data – excellent, also establishes handedness – not necessarily needed (but now pretty much default) – excellent (implemented in software packages) – Evaluate with published information

-adapted from Tom Walz

Tilt-pair phase residual plot

Rosenthal & Rubinstein (2015) Curr. Opin. Struct. Biol. 34: 135-144

Output

VALIDATION TIPS

Compare reference free averages with projections

Tilt-pair analysis

"Gold standard" FSC

Randomize phases

Appearance of expected secondary structure elements

only checks consistency of 3D map with 2D data – excellent, also establishes handedness – not necessarily needed (but now pretty much default) - excellent (implemented in software packages) - Evaluate with published information

-adapted from Tom Walz

Parameters:

Magnification	4.98 (effective: 9.96) A/px
Defocus	58626 ; 59084
Astigmatism	55.7
Voltage	300 kV
Resolution Range	100.0 - 30.0 A
Tilt Range	30
Particle radius	20 (effective: 10) px
Optimized box size (after binning)	46
Effective binning:	2

Summary of the results for all submitted particles:

Minimal Phase Residual: \$2.53* Minimum at the position: 2.0*, 10.0* Tilt axis (angle with respect to the X axis): 78.7*
Tilt angle: 10.2*
Hand Phase Difference: 12,48*
Average distance to the global minimum: 5.24*
Particles in the cluster (0.50 - 6.13°) near the minimum
average phase residual:
1 2 4 5 2 8 9 10 13 14 16 17 18 20 21 22 25 26 22
28 29 30 31 34 35 43 44 46 47 48 49
Particles outside the cluster:
3 6 11 12 15 10 23 24 32 33 36 37 38 39 40 41 42 45
NAMES AND AN

Compare reference free averages with projections

Tilt-pair analysis

"Gold standard" FSC

Randomize phases

Appearance of expected secondary structure elements

only checks consistency of 3D map with 2D data – excellent, also establishes handedness – not necessarily needed (but now pretty much default) – excellent (implemented in software packages) – Evaluate with published information

-adapted from Tom Walz

Voxel size: 1.63 Box length: 155 Degree of symmetry: 1 Object size ratio: 0.66

FSC

-adapted from Rich Hite

Compare reference free averages with projections

Tilt-pair analysis

"Gold standard" FSC

Randomize phases

Appearance of expected secondary structure elements

only checks consistency of 3D map with 2D data – excellent, also establishes handedness – not necessarily needed (but now pretty much default) – excellent (implemented in software packages) – Evaluate with published information

-adapted from Tom Walz

Figure 3. Resolution assessment by Fourier shell correlation (FSC) and its validation by the noise substitution test. (a) FSC between half-maps where particle orientation refinement uses image data to 7 Å resolution (red circle) or to 7 Å but where high resolution data beyond 17 Å has been substituted with data with randomized phases (HR-noise, green circle) or data from noise images (HR-noise, blue circle). Portion of FSC signal due to over-fitting is shown by the shaded blue region (FSCn), and the portion due to true structural signal is the shaded pink region (FSCtrue). (b) FSC curves as above but where particle orientation refinement has been limited to 17 Å resolution. The 'free shells' above 17 Å resolution show no over-fitting because they were not used in refinement. (c) FSCn between half-maps for noise-substituted data shows FSC artefacts that result from a tight mask. (d) FSC curve (red), also called Cref, between whole-map and coordinate model placed in the map by rigid body fitting crosses the 0.5 threshold at a point indicating 7.6 Å resolution. Flexible fitting of the model produces an overly optimistic FSC

Compare reference free averages with projections

Tilt-pair analysis

"Gold standard" FSC

Randomize phases

Appearance of expected secondary structure elements

only checks consistency of 3D map with 2D data – excellent, also establishes handedness – not necessarily needed (but now pretty much default) – excellent (implemented in software packages) – Evaluate with published information

-adapted from Tom Walz

