Single-Particle Analysis Part III - Case Studies

Yong Zi Tan Carragher, Potter and Mancia Lab NYSBC/Columbia University

Many different ways to proceed in each step of the workflow

- How to pick and choose the packages?
- Looking at examples of things that worked
 - 1. TRPV1 Channel to 3.4 Å (Liao et al., 2014)
 - 2. Proteasome to 2.8 Å (Campbell & Veesler *et al.*, 2015)
 - 3. 60S Ribosome to 2.9 Å (Passos & Lyumkis, 2015)

Case Study 1: TRPV1 Channel

1) Sample Preparation

• TRPV1 Characteristics

- Membrane channel
- 292 kDa tetramer (C4 symmetry)
- MBP affinity purification
- Solubilized in DDM and also amphipols

1) Sample Preparation

- Membrane channel
- 292 kDa tetramer (C4 symmetry)
- MBP affinity purification
- Solubilized in DDM and also amphipols
 - Short amphipathic polymers that are able to keep individual membrane protein water-soluble in their native state under the form of small hydrophilic complexes
 - Pros: More stability, no detergent required
 - Other possibilities: Nanodiscs, liposomes, SMALPs (Postis *et al.*, 2015) and saposin-lipoprotein (Frauenfeld *et al.*, 2016)

2) Screening and Characterization

- Random conical tilt to obtain initial model
 - Pros. Ab initio, useful when common lines does not work (preferred orientation), useful for heterogeneity
 - Cons: Possible flattening of protein, resolution restricted, missing cone

- TF20
 - 200 kV, CCD Camera
- Polara
 - 300 kV
 - K2 camera
 - Dose rate: 9.9 e-/pixel/s
 - Minimize coincidence loss
 - Defocus range: 1.5 to 3.0 mm
- Semi-automated collection using UCSFImage4

• Inspect your micrographs

• Thon rings going out far after drift correction means good ice thickness

Theoretical Look at Ice Thickness

Loss of resolution due to

- 1. More noise from the ice
- 2. Averaging particles with defocii distributed over a range due to the ice thickness
- 3. Inelastic scattering

Empirical Look at Ice Thickness

• Thicker ice, less Thon rings

- SamViewer: Particle picking
- CTFFind3 and CTFTilt: CTF estimation
- Spider: 2D Classification

- Frealign: 3D Reconstruction for RCT data
- Relion: 3D Classification and Reconstruction for Cryo data

Classification versus Refinement What are the differences?

3D Classification

- Randomly split data up
- Coarse angular sampling usually used
- Euler angles and shifts can be refined together with classification, or done out of sync, or decoupled fully
- Use to clean up dataset, and tease out heterogeneity

3D Refinement

- All data refined against 1 model (data split into 2 half maps)
- Progressively finer angular sampling used
- Use to push resolution

Dose fractionation

- Removal of first 2 frames for each movie stack
 - Affected most by beam induced movement
- Removal of last 14 frames
 - Affected most by radiation damage
- Now done more finely by
 - Relion
 - Tim Grant's exposure weighting software

5) Model Building

- Not all C_{α} or side chains built
- Validation of EM Map: Gold standard refinement and resolution
- Validation of atomic model: Ramachandran plot

Quote from Yifan Cheng - What was required to get to 3.4 Å

- 1. Production of high quality and biochemically stable proteins
- 2. Available and well characterized pharmacological reagents
- 3. Camera related new technologies: high-DQE and dose fractionation
- 4. Classification of heterogeneous particles

Case Study 2: Proteasome

2.8 Å resolution reconstruction of the *Thermoplasma acidophilum* 20S proteasome using cryo-electron microscopy

Melody G Campbell^{1,2†}, David Veesler^{1,2,3†}, Anchi Cheng^{1,2,4}, Clinton S Potter^{1,2,4}, Bridget Carragher^{1,2,4}*

SHORT REPORT

CC)

¹National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, United States; ²Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States; ³Department of Biochemistry, University of Washington, Seattle, United States; ⁴New York Structural Biology Center, New York, United States

Information obtained from Campbell & Veesler 2014, Campbell & Veesler et al., 2015

1) Sample Preparation

• T20S Proteasome Characteristics

- Soluble protein
- 700 kDa, D7 symmetry
- Common test sample
 - 3.3 Å cryo-EM structure (Li *et al.*, 2012)
 - Minimal structural heterogeneity

1) Sample Preparation

• T20S Proteasome Characteristics

- Soluble protein
- 700 kDa, D7 symmetry
- Common test sample
 - 3.3 Å cryo-EM structure (Li et al., 2012)
 - Minimal structural heterogeneity

• Carbon grids

Krios

- 300 kV
- K2 camera in super-resolution mode
 - Dose rate: 12 e-/pixel/s
 - Defocus range: 0.9 to 2.4 mm
- Falcon II was also used and benchmarked
- Leginon automated data collection

Appion Package

- Motioncorr: Whole frame alignment
- Done simultaneously
 - FindEM: Template particle picking
 - CTFFind3: CTF estimation
- Xmipp CL2D: 2D Classification
 - Downsampled to change pixel size from 0.6575 Å to 5.26 Å
 - Rationale: Computing speed up
- PDB2MRC: Initial Model
- Relion

• Selection of Micrographs

- By eye
 - Select squares with thin ice to collect
- Computationally
 - Criteria: Cross-correlation coefficients (CC) between the 1-D radially averaged power spectrum of each micrograph and the calculated Contrast Transfer Function (CTF).
 - CC ≥ 80% at a resolution of 4 Å or better kept
 - 196 out of 985 selected
 - Part of Appion

• Selection of Particles

- 2D Classification
- MaxProb from Relion
 - Value indicates uncertainty in both class and orientation assignments
 - 1/6 of particles discarded - Less is more

Relion Particle Polishing

- Correct individual beam-induced particle translations
- Calculate and apply a frequency dependent weight for the contribution of individual movie frames to the reconstruction
 - More refined approach of dealing with different information content of frames
- Can done using experimental measured (Grant & Grigorieff 2015)
 - Which one is better?

• Answer: Both works!

5) Model Building

- UCSF Chimera: Known crystal structure docked in
- Rosetta: Atomic model refinement
 - Coot: Check model, add water models, iterative refinement
 - Refinement done against 1 half map, FSCs calculated against the other

What was required to get to 2.8 Å and see water molecules

- Proteasome is a rigid and homogenous sample
- Relatively high electron dose
 - More signal for better particle alignment
- Mechanical stage movement used instead of beam-tilt at high magnification exposure
 - Avoid introducing phase shift
- Picking out thin ice by a trained eye
- Utilization of algorithmic advances
 - Projection matching, particle polishing

Case Study 3: 60S Ribosome

Contents lists available at ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier.com/locate/yjsbi

Single-particle cryoEM analysis at near-atomic resolution from several thousand asymmetric subunits

Dario Oliveira Passos, Dmitry Lyumkis*

Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92

1) Sample Preparation

• 60S Ribosome Characteristics

- Complex made of RNA and proteins
- 2.5 MDa in size
- No symmetry

• Holey carbon grids - over holes

• Krios

- 300 kV
- K2 camera in super-resolution mode
 - Dose rate: 8.5 e-/pixel/s
 - Defocus range: 0.5 to 2.5 mm
- Leginon automated data collection

Appion Package

- Motioncorr: Whole frame alignment
 - Binned by 2 for more cost-effective processing
- Done simultaneously
 - Manual masking
 - Manual particle picking (of ~300 particles)
 - CTFFind3: CTF estimation
- Xmipp CL2D: 2D Classification for good class averages to use as templates
- FindEM: Template particle picking

• Appion Package

- Xmipp CL2D: Round 2 2D Classification for template picked particles
- Optimod: Generate initial model using common lines method
- Xmipp Reconstruction: Obtain initial angles for good particles
- Frealign
 - Single model refinement
 - 1 round of refinement \rightarrow ~ 5 Å
 - 3 rounds of refinement \rightarrow ~ 3 Å
 - 10 rounds of refinement \rightarrow 2.9 Å

4) Model Building

- Looked at eL6, a protein missing from crystal structures
 - Rosetta: Atomic model refinement
 - Molprobity: Validation of atomic model
 - Map-to-model FSC: Validation

Resolution limitations

Have I collected enough particles?

• Law of diminishing returns

- Collecting more particles not always the answer
- Extrapolate: 10x more particles to gain 0.1 Å

2010: 5.5 Å for 1.4 million 80S (Armache *et al*) 2013: 4.5 Å for 30,000 80S (Bai *et al*.)

2015: 2.9 Å for 75,653 60S

Defocus Matters... to an extent

Structures under 3Å so far...

#	Resolution (Å)	Sample	Defocus Range (µm)
1	2.9	PCV2 (1.67MDa)	0.2 - 2.5
2	2.3	p97 with Inhibitor (0.54MDa)	0.7 - 2.5
3	2.4	p97 with ADP (0.54MDa)	0.7 - 2.5
4	2.9	60S (2.5MDa)	0.5 - 2.5
5	2.8	AAV-DJ (3.75MDa)	0.75 - 3.0
6	2.8	Proteasome (0.7MDa)	0.9 - 2.4
7	2.9	Cytoplasmic polyhedrosis virus with GTP (Not given)	Not given
8	2.2	Beta-galactosidase (0.465MDa)	0.6 - 2.0
9	2.9	Ribosome-EF-Tu complex (2.8 MDa)	0.7 - 2.5
10	2.9	Anthrax toxin pore (0.44 MDa)	1.8 - 5.1
11	2.6	VP6 Rotavirus (0.041 MDa)	0.4 - 2.0

Further Advancement -Different Substrates Available

 Gold grids provide more stability compared to carbon grids

Further Advancement -Different Substrates Available

Thank you

Any questions?

Exposure Weighting

