



### 24 Years of Fitting Atomic Models



#### Guoji Wang, Claudine Porta, Zhongguo Chen, Timothy S. Baker, John E. Johnson:

Identification of a Fab interaction footprint site on an icosahedral virus by cryoelectron microscopy and X-ray crystallography. Nature, 355:275, 1992.

Phoebe L. Stewart, Stephen D. Fuller, Roger M. Burnett:

Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy.

EMBO J., 12:2589, 1993.

"At that time, placing an atomic structure into an EM map seemed like a very dangerous idea..." Phoebe Stewart, 2003

## 1999: The First Algorithmic Packages



# Willy Wriggers, Ronald A. Milligan, and J. Andrew McCammon:

Situs: A Package for Docking Crystal Structures into Low-Resolution Maps from Electron Microscopy. J. Structural Biology, 125:185, 1999

#### Niels Volkmann and Dorit Hanein:

Quantitative Fitting of Atomic Models into Observed Densities Derived by Electron Microscopy.

J. Structural Biology, 125:176, 1999

**Today:** 

Dozens of packages available, e.g. Situs, Sculptor, COAN, DockEM, EMFit, DireX, etc... see http://en.wikibooks.org/wiki/Software\_Tools\_For\_Molecular\_Microscopy

























































### Solution Proposed Here: Simultaneous Multi-Fragment Refinement

•Powell conjugent gradient, 6N degrees of freedom

•new stand-alone tool in Situs 2.6: collage

•What is new? Fragments see each other (i.e avoid steric clashes) via normalization of cross correlation:

$$C(\mathbf{T}) = \frac{\int \rho_{\rm em}(\mathbf{r}) \cdot \rho_{\rm calc}(\mathbf{r} + \mathbf{T}) \, \mathrm{d}^3 \mathrm{r}}{\sqrt{\int \rho_{\rm em}^2(\mathbf{r}) \mathrm{d}^3 \mathrm{r}} \sqrt{\int \rho_{\rm calc}^2(\mathbf{r}) \, \mathrm{d}^3 \mathrm{r}}}$$

Birmanns, Rusu & Wriggers, J. Struct. Biol., 173:428, 2011

|                                                                                                                                                                                                                                                                                      | Actomyosin Complex<br>F-actin / Actomyosin                                                                                                                   |                                                                                                                                                                     | GroEL (emd-1080<br>PDB Code: 1XCK                                                                                                                        |                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Reference Model                                                                                                                                                                                                                                                                      |                                                                                                                                                              |                                                                                                                                                                     |                                                                                                                                                          |                                                                                   |
|                                                                                                                                                                                                                                                                                      | RMSD (Å)                                                                                                                                                     | CC                                                                                                                                                                  | RMSD (Å)                                                                                                                                                 | CC                                                                                |
| Reference Model                                                                                                                                                                                                                                                                      |                                                                                                                                                              | 0.576 / 0.703                                                                                                                                                       |                                                                                                                                                          | 0.946                                                                             |
| nteractive Peak Search                                                                                                                                                                                                                                                               | 5.1 / 3.8                                                                                                                                                    | 0.537 / 0.672                                                                                                                                                       | 4.3                                                                                                                                                      | 0.881                                                                             |
| Single-Body Refinement                                                                                                                                                                                                                                                               | 2.6 / 2.1                                                                                                                                                    | 0.569 / 0.698                                                                                                                                                       | 1.7                                                                                                                                                      | 0.945                                                                             |
| Multi-Body Refinement                                                                                                                                                                                                                                                                | 1.8 / 1.4                                                                                                                                                    | 0.583 / 0.709                                                                                                                                                       | 1.3                                                                                                                                                      | 0.950                                                                             |
| haperonin GroEL (subunits in<br>puryosin complex, and 14 mon<br>rom the references and cross-of<br>f actomyosin correspond to the<br>hose of the GroEL due to fila<br>quivalent to <i>colores</i> before Po-<br>ingle-body refinement each fra<br>Powell optimization), while in the | clude 12 G-acti<br>omers for GroEl<br>correlation coeffi<br>e map shown in<br>ument end effect<br>well optimizatio<br>gment is fitted i<br>ac multi-body ref | n monomers / 12<br>L). Root mean squ<br>cients (CC) are s<br>Fig. 6 and are sys<br>s. The interactive<br>n (Chacón and W<br>ndependently (equ<br>inement all fragme | myosin S1 for<br>nare deviation (I<br>hown. The CC<br>stematically low<br>e peak search m<br>/riggers, 2002).<br>nivalent to colore<br>nts were simultar | the ac-<br>RMSD)<br>values<br>er than<br>odel is<br>In the<br>es after<br>neously |

































### Anchor Point Registration: matchpoint





*k* → *h* ≠ *k* matching
number of points *k* (atomic), *h* (EM) now determined by desired level of detail, not "variability criterion". *k* and *h* should give similar point density and are dependent on volume of atomic structure and EM map



























































### Acknowledgements

Pablo Chacón Jochen Heyd Julio Kovacs Yao Cong Mirabela Rusu Manuel Wahle Stefan Birmanns Zbigniew Starosolski



http://biomachina.org

#### **Collaborators:**

Maik Boltes & Herwig Zilken (Forschungszentrum Jülich) Vitold Galkin and Edward Egelman (U Virginia) Seth Darst (Rockefeller University) Dalia Segal, Sharon Wolf, Amnon Horovitz (Weizmann Institute) Alexander Rigort (MPI Martinsried) Lorenzo Alamo and Raúl Padrón (HHMI, Venezuela)