2025 Spring cryoEM course Welcome and Anatomy of an EM

January 22, 2025

 Course outline Student survey Anatomy of an EM

Welcome to SEMC

20th year of the course

🗱 NYSBC 👘 SEMC

Course logistics: main website

https://semc.nysbc.org/workshops/2025-em-course/

SIMONS ELECTRON MICROSCOPY CENTER

IOME ABC

BOUT

PUBLICATIO

IONS RESO

JOBS

FIND US

CURRENT/UPCOMING COURSES | PAST COURSES

EM Courses:	The Winter-Spring 2025 EM Course				
2024					
2022	About the course				
2023	Electron microscopy in combination with image analysis is increasingly powerful in producing 3D structures of				
2022	individual molecules and large macromolecular complexes that are unapproachable by other methods. This				
2021	course is focused on the concepts and theories behind electron microscopy. Each week guest lecturers and SEMC staff lead discussions on the practice of solving molecular structures by electron microscopy. Students will be				
2020	responsible for watching relevant sections from Getting Started in Cryo-EM and cryoEM101 ahead of attending the lectures.				
2019	The course will be held at the New York Structural Biology Center at 89 Convent Ave (133rd St).				
2018					
2017	Course Schedule				
2016	Classes in NYSBC A-11 seminar room (Mondays 3:30-5pm and select Wednesdays 3:30-5pm)				
	EM fundamentals section				
	Jan 20: Martin Luther King Holiday (no class)				
	Jan 22: Lecture – Introduction & Basic anatomy of the electron microscope (Ed Eng – NYSBC/SEMC & SEMC staff)				
	Jan 27: Lecture – New cryoEM hardware and supporting a facility (Michael Alink – NYSBC/SEMC)				
	Jan 29: Practical – TEM use (SEMC staff [worksheet])				
	Feb 3: Lecture – Considerations for biological cryoEM (Ed Eng – NYSBC/SEMC & SEMC staff)				
	Feb 5: Practical – Sample Preparation & Support films (SEMC staff [worksheet])				

- Course Administrator:
 - Ed Eng (NYSBC)
- Teaching Assistants:
 - Mahira Aragon (NYSBC)
 - Alex Flynn (NYSBC)
 - Shubhangi Agarwal (NYSBC)
 - Kasahun Neselu (NYSBC)

Course logistics: additional resources

youtube.com/nrammsemc

cryo-em-course.caltech.edu/videos

Caltech Getting Started in Cryo-EM

Welcome Course Overview Outline Lecture Videos Instructor Links

WELCOME TO THE COURSE

Before diving into the lecture videos, start by watching the trailer and reading the course overview and outline. We hope you enjoy learning about cryo-electron microscopy (cryo-EM)!

cryoem101.org

CryoEM 101 CryoET 101

IOME CRYDEM 101 CHAPTERS CRYDET 101 CHAPTERS ABOUT CONTACT

Cryo-EM and Cryo-ET are emerging methods to image biological specimens at ever-improving resolutions.

The purpose of CryoEM and CryoET 101 is to teach the principles of both techniques using a media rich approach with videos, animations, interactive simulations, and real data that cover relevant steps along a typical project workflow. If you are working with purified proteins or protein complexes, we invite you to start with CryoEM 101. If you are interested in imaging cells, subcellular components, or otherwise heterogeneous biological materials, CryoET 101 may be more suitable for you.

Ch. 3: Zoning into Regions of Interest Ch. 2: From Sample to Cryo ET Grid \checkmark \cdot Ch. 1: Is Cryo-ET for You? Ch. 3: Grid Screening & Evaluation Ch. 1: Sample Ch. 2: Cryo-EM Purification Grid Preparation Y Ch. 4: Data Collection Ch. 5: Image Processing & 3D Ch. 4: Cryo-EM Data Collection Ch. 5: Image Processing

SEMC 🗱 NYSBC

Course logistics: main topics

Section I: EM fundamentals Section 2 : EM crystallography Section 3 : Single Particle Analysis Section 4 : Tomography Short Course March 31-April 4 Section 5 : Future perspectives

Course logistics: main topics

NYSBC-SEMC TOMO short course March 31-April 4, 2025

1 WEEK SHORT COURSE

Ť

🗱 NYSBC

Course logistics: class for credit

Component

Percentage

Recitation/Participation 50% - *JC/HW/questions*

Practicals

Attendance

 $10\% \times 3$

20%

doi: 10.2210/rcsb_pdb/goodsell-gallery-044

Insulin release, 2022

🗱 NYSBC

Electron microscopy

What is possible today?

. W-

10

What brought about the resolution revolution?

Microscopes

tware \mathcal{O}

Leginon / SerialEM / EPU, ...

MotionCorr2, Unblur, ...

RELION, FREALIGN/cisTEM, cryoSPARC EMAN, Sparx, SPHIRE, XMIPP, ...

(~2012-2014)

Direct Detectors

Computers

2012->2017 **Cost reduced by 100x**

14 independent structures

NYSBC **© SEMC**

cryoEM: a technology on the rise

coming soon

🗞 NYSBC

cryoEM: a technology on the rise

Micro crystal electron diffraction (microED)

2 µm

Cryo Electron Tomography (cryoET)

🗱 NYSBC 🛛 🗊 SEMC

The tool of our trade: EM

Ruska and Knoll in Berlin in the early 1930s -Wikipedia

THE NOBEL PRIZE @NobelPrize The Nobel Prize 🤣

Take a look at a sketch by physics laureate Ernst Ruska, dated 9 March 1931, of the cathode ray tube for testing one-stage and two-stage electron-optical imaging by means of two magnetic electron lenses (electron microscope). Ruska was awarded the 1986 physics prize for his work.

9:58 AM · Aug 22, 2021 · Sprout Social

Why electrons?

Transmitted electrons

Main beam electrons

🗱 NYSBC

SEMC 15

Why electrons?

Small wavelength

Can be focused

Damages sample worse with faster electrons

Poor penetration better with faster electrons

Why electrons?

Ideal dose for cryoEM?

https://cryo-em-course.caltech.edu/

Specimen Behavior in the **Electron Beam**

R.M. Glaeser

Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, United States ¹Corresponding author: e-mail address: rmglaeser@lbl.gov

• The first noticeable bubbles appear after the accumulated exposure (for 300 keV electrons) is approximately 150 e/A. At this high exposure, high-resolution features would long since be destroyed, of course, but the macromolecular particles might still be visible.

🗱 NYSBC 🔰 🗊 SEMC

🗞 NYSBC SEMC

The electron microscope

- **e-gun** source produces e- e-source
- accelerator accelerate e- to high engergy
- condenser control illumination on sample
- **objective** sample and main imaging lens
- Intermediate
projectioncontrols mag and image/
diffraction modeprojection
lens
- Flu-screen Flu-screen image via camera
- **TEM camera** TEM detector

NYSBC SEMC

Electron sources What are the 3 main kinds of electron sources?

nanoscience.com

thermofisher.com

Electron sources How fast are the electrons movil

theren & an elec +SEV Themianic Emission what's the speed of this e Tungster Filament V= E E= VQ = Ve = 5000eV E = 5000 × 1.6 × 10-1" = 8 × 10-16 J $E_k = \frac{1}{2}mv^2$ $M_e = 9.11 \times 10^{-16} = \frac{1}{2}mv^2$

https://www.youtube.com/

Light microscope

Transmission electron microscope

hon	Visible light	Electrons
lectron?	Glass lenses	Electron-magnet lenses
10-31/29	450-650 nm	3.70 pm (100 ke) 2.51 pm (200 ke) 1.96 pm (300 ke)
	speed of light in vacuum c	0.548c (100 keV 0.695c (200 keV 0.776c (300 keV
/watch?v=	tYCET6vYdYk	

🗱 NYSBC

Electron sources 80-120 kV: Hitachi 7800, JEOL1400, TFS Talos 120

W or LaB6

sub-nm resolution

High contrast & robust [developments ongoing to push resolution with FEG systems]

200 kV: J2100F;TFS Tecnai, Glacios, Arctica FEG 2+ Å resolution (3.5-4 Å)

300 kV: JEOL3200FSC, cryoARM; TFS Krios, Halo FEG Smaller effect on unwanted lens aberrations

1.5-3 Å resolution

🗱 NYSBC SEMC

Electron sources

I-I.2 MV: Hitachi, JEOL LaB6

uhvem.osaka-u.ac.jp

🗱 NYSBC 🛛 🗊 SEMC

Why do we need a vacuum?

Filament - O2 will burn out source

- **Beam coherence** at STP mean free path ~1 cm
- **Insulation** interaction between e- and air
- **Contamination** reduce interaction gas, e-beam and sample

24

wikipedia.com

|-|0-3 Torr | >0.| Pa **PVP / Rotary** 10-3-10-6 Torr | 0.1-10-4 Pa Diffusion 10-6-10-9 Torr | 10-4-10-7 Pa Turbo 10-9-10-12 Torr | 10-7-10-9 Pa IGP

 $I mm Hg = I Torr = 10^2 Pa$ $atm = 760 \text{ Torr} = 7.5 \times 10^4 \text{ Pa}$

What types of pumps do we have?

Chamber and Camera

10-6 - 10-7 Torr

10⁻⁹ Torr

| 0-5 - | 0-6 Torr

R NYSBC

What types of lenses do we have?

Do:

- Start at eucentric height and focus
- Check if it is already good before attempt
- Align from top to bottom
- Not to do:
 - Align without a way to undo
 - Align when TEM is not stable (i.e., temperature)

R NYSBC SEMC

Microscope Alignments What to do & what not to do

• Do:

Electron gun

The **contrast transfer function** (**CTF**) mathematically describes how aberrations in a transmission electron microscope (TEM) modify the image of a sample

The phase shift (phase distortion function) due to the objective lens can be combined into a single phase factor χ , given by,

$$\chi(|g|) = \left(\frac{1}{2}\pi C_s \lambda^3 |g|^4 - \pi C_s \lambda^3 |g|^4\right)$$

$$=\frac{2\pi}{\lambda}\left(\frac{1}{4}C_{s}\alpha^{4}-\frac{1}{2}\right)$$

where,

- λ -- The <u>wave-length</u>,
- Δf -- The defocus value,
- lgl -- The spatial frequency,
- α -- The convergence semi-angle.

https://www.globalsino.com/EM/page4236.html

C_s -- The spherical aberration coefficient, defining the quality of objective lens,

CIFThe contrast transfer function (CTF) mathematically describes how aberrations in a transmission electron microscope (TEM) modify the image of a sample

The phase shift (phase distortion function) due to the objective lens can be combined into a single phase factor χ , given by,

$$\chi(|g|) = \left(\frac{1}{2}\pi C_s \lambda^3 |g|^4 - \pi C_s \lambda^3 |g|^4\right)$$

 $\pi \Delta f \lambda |g|^2$ [4236a.a] $=\frac{2\pi}{\lambda}\left(\frac{1}{4}C_{s}\alpha^{4}-\frac{1}{2}\Delta f\alpha^{2}\right)$ [4236a.b]

🖹 NYSBC SEMC 32

How to increase efficiency?

1 target/setup 80 s/image ~1000 images/day 5 targets/setup 35 s/image ~2500 images/day 30 targets/setup 22 s/image ~3800 images/day

13.6MP

Cheng A, Eng ET, Alink L, Rice WJ, Jordan KD, Kim LY, Potter CS, Carragher B. High resolution single particle cryoelectron microscopy using beam-image shift. J Struct Biol. 2018;

beam tilt 0 mrad

beam tilt 0.5 mrad

But... image shift ind so... implement hardwar

Anchi Cheng

Overhead

30 s stage move and settling30 s focus and drift check20s for K2 40 frame movie to save

70 targets/setup 18 s / image ~ 4800 images/day

🗱 NYSBC

- Photon converted
- Direct sensing

Digital Cameras for TEM

CCD camera

Digital Cameras for TEM

DED camera

Koning et al. Ann. Anatomy 2018

- MTF (Modulation Transfer Transform)
 - contribute to signal envelope S/N over spatial frequency range

Detector Performance Characterization

• DQE (Detector Quantum Efficiency)

PSF: the point spread function describes the response of an imaging system to a point source or point object. MTF: the modulation transfer function, is defined as the Fourier transform of the point spread function

NYSBC

Detectors Detector Performance Characterization

dectris.com

Ruskin, et al JSB

🗱 NYSBC 🛛 🗊 SEMC

37

Improving the resolution: Detecting electrons instead of photons DDD

1.37 Å/pixel

1.38 Å/pixel

🗱 NYSBC

200 KeV; $20 \text{ e}/\text{Å}^2$; carbon film; 3k x 3k image

Improving the resolution: Detecting electrons instead of photons

K3 specs

https://www.gatan.com/K3

Specifications

	К3	K3 Base
TEM operating voltage (kV)	200/300	
Sensor size (pixels)	5,760 x 4,096	3,456 x 4,096
Readout modes	Counting Super-resolution	Counting
Max. image size (pixels)	11,520 x 8,184 Super-resolution	3,456 x 4,096
Performance relative to physical Nyquist (DQE) Peak 0.5	>0.87 / >0.83 >0.53 / >0.53	>0.8 >0.5
Sensor read-out (full fps)	>1500	
Transfer speed to computer (full fps)	>75	>25
Motion correction	Inline	
Gatan Microscopy Suite® software	Included	
Automation support	Latitude and other third-party software	

🖹 NYSBC

Specifications are subject to change without notice.

Improving the resolution: Detecting electrons instead of photons

Counting mode

Electron enters detector.

Electron signal is scattered.

https://www.gatan.com/improving-dqe-counting-and-super-resolution

5,760 x 4,096 px

11,520 x 8,184 px

0.05	0.10	
0.10	0.75	

Charge collects in each pixel.

Events reduced to highest charge pixels.

🗱 NYSBC

40

Improving the resolution: Detecting electrons instead of photons

K3 lowers Read Noise with Correlated Double Sampling (CDS)

https://www.gatan.com/

NYSBC SEMC

Falcon4 specs

Full Spatial Resolution All localized events			
Coordinates			
x	У		
3953.24	2845.63		
919.78	1447.39		
3864.43	348.13		
3606.05	1539.54		
1758.86	2971.55		
3983.58	531.96		

Counted events of all raw frames with full temporal resolution (320 fps) and spatial resolution (events are localized to onesixteenth of a pixel).

Improving the resolution: Detecting electrons instead of photons

Camera architectur

Sensor size

Pixel size

TEM Operating volt

Internal frame rate

Frame rate to stora

Camera Overhead

File formats

Lifetime (<10% DQ

Detection Modes

Imaging performan

DQE (0)

DQE (½ Nq)

DQE (1 Nq)

https://www.thermofisher.com/us/en/home/electron-microscopy/products/accessories-em/falcon-detector.html

re	Direct electron detection		
	4,096 × 4,096 pixels, ~ 5.7	7 x 5.7 cm ²	
	14 x 14 µm ²		
tage	200 kV, 300 kV		
	320 fps		
ige	320 fps (EER mode)	ectron-eve	nt representatio
time	0.5 s per acquisition		
	EER (native), MRC, TIFF, LZW TIFF		
E degradation)	5 years in normal use (1.5Ge/px)		
	Electron counting mode Survey mode (fast linear mode)		
ce in EER mode (4k x 4k)	300 kV	200 kV	
	0.92	0.91	
	0.72	0.62	
	0.50	0.33	

NYSBC

Images are movies

- 0.5 e⁻/Å²/frame
- Image = Frame1 + Frame2 + Frame3 + Frame4 + Frame5
- We can use DDD movies to examine (and correct) "beam induced motion"

🗱 NYSBC

10 frame averages

Images are movies

Each averaged frame corresponds to 0.25 s.

Dose/frame = $5 \text{ e}^{-/\text{Å}^2}$

A "movie" of rotavirus exposed to electron beam

Brilot C.F. et al. (2012) J Struct Biol.

🗱 NYSBC

Correcting for movement

60-frame average (no alignment)

60-frame average (translational alignment)

Brilot C.F. et al. (2012) J Struct Biol.

Rest NYSBC

What brought about the resolution revolution? (~2012-2014)

Microscopes

Hardware

Software

MotionCorr2, Unblur, ...

Nakane, et al. Single-particle cryo-EM at atomic resolution. Nature (2020).

Direct Detectors

Computers

2012->2017 **Cost reduced by 100x**

Leginon / SerialEM / EPU, ...

RELION, FREALIGN/cisTEM, cryoSPARC EMAN, Sparx, SPHIRE, XMIPP, ...

14 independent structures

NYSBC

What brought about the resolution revolution?

Hardware

Software

Nakane, et al. Single-particle cryo-EM at atomic resolution. Nature (2020).

NYSBC 🗱 SEMC

47

Cryoem modalities and tools

Example

Single-particle reconstruction

Cryo-EM

Imaging

Single particles

2.2 Å

2D Electron crystallography

Imaging/diffraction

2D crystals

1.9 Å

MicroED

Imaging/diffraction

3D crystals

1.4 Å

48

cryoEM: technology on the rise

1986

2017

in progress

the next chapter

🗱 NYSBC

And true "atomic" resolution is possible:

Nakane, et al. Single-particle cryo-EM at atomic resolution. Nature (2020).

How are samples prepared for cryoEM?

The start

Questions?

